Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод. Ядерный магнитный резонанс. Области применения ЯМР Явление магнитно ядерного резонанса

Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод. Ядерный магнитный резонанс. Области применения ЯМР Явление магнитно ядерного резонанса

26.11.2023

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР), явление резонансного поглощения радиочастотной электромагн. энергии в-вом с ненулевыми магн. моментами ядер, находящимся во внеш. постоянном мага. поле. Ненулевым ядерным магн. моментом обладают ядра 1 Н, 2 Н, 13 С, 14 N, 15 N, 19 F, 29 Si, 31 P и др. ЯМР обычно наблюдается в однородном постоянном магн. поле В 0 , на к-рое накладывается слабое радиочастотное поле В 1 перпендикулярное полю В 0 . Для в-в, у к-рых ядерный I= 1 / 2 (1 H, 13 C, 15 N, 19 F, 29 Si, 31 P и др.), в поле В 0 возможны две ориентации магн. ядра "по полю" и "против поля". Возникающие два уровня энергии Е за счет взаимод. магн. момента ядра с полем В 0 разделены интервалом
При условии, что илигде h - , v 0 - частота радиочастотного поля В 1 , - круговая частота,- т. наз. гиромагн. отношение ядра, наблюдается резонансное поглощение энергии поля B 1 , названное ЯМР. Для 1 H, 13 C, 31 Р частоты ЯМР в поле В 0 = 11,7 Тл равны соотв. (в МГц): 500, 160,42 и 202,4; значения (в МГц/Тл): 42,58, 10,68 и 17,24. Согласно квантовой модели в поле В 0 возникает 2I+1 уровней энергии, переходы между к-рыми разрешены при где т - магн. квантовое число.

Техника эксперимента. Параметры спектров ЯМР. На явлении ЯМР основана . Спектры ЯМР регистрируют с помощью радиоспектрометров (рис.). Образец исследуемого в-ва помещают как сердечник в катушку генерирующего контура (поле B 1), расположенного в зазоре магнита, создающего поле В 0 так, что При наступает резонансное поглощение, что вызывает падение напряжения на контуре, в схему к-рого включена катушка с образцом. Падение напряжения детектируется, усиливается и подается на развертку осциллографа или записывающее устройство. В совр. радиоспектрометрах ЯМР обычно используют мага, поля напряженностью 1-12 Тл. Область спектра, в к-рой имеется детектируемый сигнал с одним или неск. максимумами, наз. линией поглощения ЯМР. Ширина наблюдаемой линии, измеренная на половине макс. интенсивности и выраженная в Гц, наз. шириной линии ЯМР. Разрешение спектра ЯМР - миним. ширина линии ЯМР, к-рую позволяет наблюдать данный спектрометр. Скорость прохождения - скорость (в Гц/с), с к-рой изменяется напряженность магн. поля или частота воздействующего на образец радиочастотного излучения при получении спектра ЯМР.

Схема спектрометра ЯМР: 1 - катушка с образцом; 2 - полюса магнита; 3 -генератор радиочастотного поля; 4 -усилитель и детектор; 5 - генератор модулирующего напряжения; 6 - катушки модуляции поля В 0 ; 7 - осциллограф.

Поглощенную энергию система перераспределяет внутри себя (т. наз. спин-спиновая, или поперечная ; характеристич. время Т 2) и отдает в (спин-решеточная , время Т 1). Времена Т 1 и Т 2 несут информацию о межъядерных расстояниях и временах корреляции разл. мол. движений. Измерения зависимости Т 1 и Т 2 от т-ры и частоты v 0 дают информацию о характере теплового движения, хим. , и др. В с жесткой решеткой Т 2 = 10 мкс, а Т 1 > 10 3 с, т. к. регулярный механизм спин-решеточной отсутствует и обусловлена парамагн. примесями. Из-за малости Т 2 естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В малой Т 1 T 2 и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10 -1 Гц (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Это накладывает существенные ограничения на чувствительность спектрометров ЯМР.
Основной параметр спектра ЯМР - хим. сдвиг- взятое с соответствующим знаком отношение разности частот наблюдаемого сигнала ЯМР и нек-рого условно выбранного эталонного сигнала к.-л. стандарта к частоте эталонного сигнала (выражается в миллионных долях, м. д.). Хим. сдвиги ЯМР измеряют в безразмерных величинах отсчитанных от пика эталонного сигнала. Если стандарт дает сигнал на частоте v 0 , то В зависимости от природы исследуемых ядер различают протонный ЯМР, или ПМР, и ЯМР 13 С (таблицы величин хим. сдвигов приведены на форзацах тома),. ЯМР 19 F (см. ), ЯМР 31 Р (см. )и т. д. Величины обладают существенной характеристичностью и позволяют определять по спектрам ЯМР наличие определенных мол. фрагментов. Соответствующие данные о хим. сдвигах разл. ядер публикуются в справочных и учебных пособиях, а также заносятся в базы данных, к-рыми снабжаются совр. спектрометры ЯМР. В рядах близких по строению соединений хим. сдвиг прямо пропорционален на соответствующих ядрах.
Общепринятый стандарт для ПМР и ЯМР 13 С - тетраметилсилан (ТМС). Стандарт м. б. растворен в исследуемом р-ре (внутр. эталон) или помещен, напр., в запаянный капилляр, находящийся внутри ампулы с образцом (внеш. эталон). В качестве р-рителей могут использоваться лишь такие, чье собственное поглощение не перекрывается с областью, представляющей интерес для исследования. Для ПМР лучшие р-рители - те, что не содержат (СС1 4 , CDC1 3 , CS 2 , D 2 O и др.).
В многоатомных ядра одинаковых , занимающих химически неэквивалентные положения, имеют различающиеся хим. сдвиги, обусловленные различием магн. экранирования ядер валентными (такие ядра наз. анизохронными). Для i-го ядра где- постоянная диамагн. экранирования, измеряемая в м. д. Для типичный интервал изменений- до 20 м. д., для более тяжелых ядер эти интервалы на 2-3 порядка больше.
Важный параметр спектров ЯМР - спин-спинового взаимод. ( ССВ) - мера непрямого ССВ между разл. магн. ядрами одной (см. ); выражается в Гц.
Взаимод. ядерных со , содержащимися в между ядрами i и j, приводят к взаимной ориентации этих ядер в поле В 0 (ССВ). При достаточном разрешении ССВ приводит к дополнит. линий, отвечающих определенным значениям хим. сдвигов: где J ij - ССВ; F ij - величины, значения к-рых определяются ядер i и j, соответствующего мол. фрагмента, диэдральными углами между хим. связями и числом этих связей между ядрами, участвующими в ССВ.
Если хим. сдвиги достаточно велики, т. е. min max (J ij), то ССВ проявляются в виде простых мультиплетов с биномиальным распределением интенсивностей (спектры первого порядка). Так в этильной группе сигнал метильных проявляется в виде с соотношением интенсивностей 1:2:1, а сигнал метиленовых - в виде квадруплета с соотношением интенсивностей 1:3:3:1. В спектрах ЯМР 13 С метиновые группы - дублеты (1:1), а метиленовые и метильные - соотв. и квадруплеты, но с большими, чем в протонных спектpax, значениями ССВ. Хим. сдвиги в спектрах первого порядка равны интервалам между центрами мультиплетов, а J ij - расстояниям между соседними пиками мультиплета. Если условие первого порядка не выполняется, то спектры становятся сложными: в них ни один интервал, вообще говоря, не равен ни ни J ij . Точные значения параметров спектров получают из квантовомех. расчетов. Соответствующие программы входят в мат. обеспечение совр. спектрометров ЯМР. Информативность хим. сдвигов и ССВ превратила высокого разрешения в один из важнейших методов качеств. и количеств. анализа сложных смесей, систем, препаратов и композиций, а также исследования строения и реакц. способности . При изучении , вырожденных и др. динамич. систем, геом. структуры белковых в р-ре, при неразрушающем локальном хим. анализе живых и т. п. возможности методов ЯМР уникальны.

Ядерная намагниченность в-ва. В соответствии с распределением Больцмана в двухуровневой спин-системе из N отношение числа N + на нижнем уровне к числу N - на верхнем уровне равно где k - ; Т - т-ра. При В 0 = 1 Тл и Т=300 К для отношение N + /N - .= 1,00005. Это отношение и определяет величину ядерной намагниченности в-ва, помещенного в поле B 0 . Магн. момент m каждого ядра совершает прецессионное движение относительно оси z, вдоль к-рой направлено поле B 0 ; частота этого движения равна частоте ЯМР. Сумма проекций прецессирующих ядерных моментов на ось z образует макроскопич. намагниченность в-ва M z = 10 18 В плоскости ху, перпендикулярной оси z, проекции из-за случайности фаз прецессии равны нулю: М xy = 0. Поглощение энергии при ЯМР означает, что в единицу времени с нижнего уровня на верхний переходит больше , чем в обратном направлении, т. е. разность населенностей N + - N - убывает (нагрев спин-системы, насыщение ЯМР). При насыщении в стационарном режиме намагниченность системы может сильно возрасти. Это - т. наз. эффект Оверхаузера, для ядер обозначаемый NOE (Nuclear Overhauser effect), к-рый широко применяется для повышения чувствительности, а также для оценки межъядерных расстояний при изучении мол. геометрии методами .

Векторная модель ЯМР. При регистрации ЯМР на образец накладывают радиочастотное поле , действующее в плоскости ху. В этой плоскости поле В 1 можно рассматривать как два с амплитудами В 1т/ 2, вращающихся с частотой в противоположных направлениях. Вводят вращающуюся систему координат x"y"z, ось х" к-рой совпадает с В 1т/ 2, вращающимся в том же направлении, что и Его воздействие вызывает изменение угла при вершине конуса прецессии ядерных магн. моментов; ядерная намагниченность М z начинает зависеть от времени, а в плоскости х"у" появляется отличная от нуля проекция ядерной намагниченности. В неподвижной системе координат эта проекция вращается с частотой т. е. в катушке индуктивности наводится радиочастотное напряжение, к-рое после детектирования и дает сигнал ЯМР - ф-цию ядерной намагниченности от частоты различают медленное изменение (свип-режим) и импульсный ЯМР. Реальное сложное движение ядерной намагниченности создает в плоскости х"у" два независимых сигнала: М х, (синфазный с радиочастотным напряжением В 1)и М у" (сдвинутый относительно B 1 по фазе на 90 °С). Одновременная регистрация М х" и M y" (квадратурное детектирование) вдвое повышает чувствительность спектрометра ЯМР. При достаточно большой амплитуде В 1т проекции М z = М х" =М у" =0(насыщение ЯМР). Поэтому при непрерывном действии поля В 1 его амплитуда должна быть весьма малой, чтобы сохранить неизменными исходные условия наблюдения.
В импульсном ЯМР величина В 1 ,наоборот, выбирается настолько большой, чтобы за время t и Т 2 отклонить во вращающейся системе координат M z от оси z на угол . При= 90° импульс называют 90°-ным (/2-импульс); под его воздействием ядерной намагниченности оказывается в плоскости х"у", т. е. После окончания импульса M y" начинает убывать по амплитуде со временем Т 2 благодаря расхождению по фазе составляющих его элементарных (спин-спиновая ). равновесной ядерной намагниченности М z происходит со временем спин-решеточной T 1 . При= 180° (импульс) M z укладывается вдоль отрицат. направления оси z, релаксируя после окончания импульса к своему равновесному положению. Комбинации иимпульсов широко используются в совр. многоимпульсных вариантах .
Важной особенностью вращающейся системы координат является различие резонансных частот в ней и в неподвижной системе координат: если B 1 В лок (статич. локальное поле), то М прецессирует во вращающейся системе координат относительно поля При точной настройке в резонанс частота ЯМР во вращающейся системе координат Это позволяет существенно расширить возможности ЯМР при исследовании медленных процессов в в-ве.

Хим. обмен и спектры ЯМР (динамич. ЯМР). Параметрами двухпозиционного обмена А В служат времена пребывания и а также вероятности пребывания иПри низкой т-ре спектр ЯМР состоит из двух узких линий, отстоящих на Гц; затем при уменьшении и линии начинают уширяться, оставаясь на своих местах. Когда частота обмена начинает превышать исходное расстояние между линиями, линии начинают сближаться, а при 10-кратном превышении образуется одна широкая линия в центре интервала (v A , v B), если При дальнейшем росте т-ры эта объединенная линия становится узкой. Сопоставление эксперим. спектра с расчетным позволяет для каждой т-ры указать точную частоту хим. обмена, по этим данным вычисляют термодинамич. характеристики процесса. При многопозиционном обмене в сложном спектре ЯМР теоретич. спектр получают из квантовомех. расчета. Динамич. ЯМР - один из осн. методов изучения стереохим. нежесткости, конформационных и т. п.

Вращение под магическим углом. Выражение для потенциала диполь-дипольного взаимод. содержит множители где - угол между В 0 и межъядерным r ij . При=arccos 3 -1/2 = 54°44" ("магический" угол) эти множители обращаются в нуль, т. е. исчезают соответствующие вклады в ширину линии. Если закрутить твердый образец с очень большой скоростью вокруг оси, наклоненной под магич. углом к В 0 , то в можно получить спектры высокого разрешения с почти столь же узкими линиями, как в .

Широкие линии в . В с жесткой решеткой форма линии ЯМР обусловлена статич. распределением локальных магн. полей. Все ядра решетки, за исключением , в трансляционно-инвариантном объеме V 0 вокруг рассматриваемого ядра, дают гауссово распределение g(v) = exp(-v 2 /2a 2), где v - расстояние от центра линии; ширина гауссианы а обратно пропорциональна среднему геом. объемов V 0 и V 1 ,причем V 1 характеризует среднюю по всему магн. ядер. Внутри V 0 магн. ядер больше средней, и ближние ядра благодаря диполь-дипольному взаимод. и хим. сдвигам создают спектр, ограниченный на интервале (-b, b), где b примерно вдвое больше а. В первом приближении спектр можно считать прямоугольником, тогда фурье-образ линии, т. е. отклик спин-системы на 90°-ный импульс будет

Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Общие сведения

Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента ) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии ), который обладает очень высокой степенью разрешающей способности и чувствительностью.

Применение в экономике и науке

1. В химии и физике для идентификации веществ, принимающих участие в реакции, а также конечных результатов реакций,
2. В фармакологии для производства лекарств,
3. В сельском хозяйстве для определения химического состава зерна и готовности к высеву (очень полезно при селекции новых видов ),
4. В медицине - для диагностики . Очень информативный метод для диагностики заболеваний позвоночника , особенно межпозвоночных дисков. Дает возможность обнаружить даже самые малые нарушения целостности диска. Выявляет раковые опухоли на ранних стадиях образования.

Суть метода

Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты ), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.

Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.

На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.

Виды магнитно-резонансной спектроскопии

  • Биологических жидкостей,
  • Внутренних органов.
Методика дает возможность в подробностях обследовать все ткани человеческого организма, включающие воду. Чем больше жидкости в тканях, тем светлее и ярче они на картинке. Кости же, в которых воды мало, изображаются темными. Поэтому в диагностике заболеваний кости более информативным является компьютерная томография.

Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга .

На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография ), так как упоминание ядерной реакции в названии пугает пациентов.

Показания

1. Заболевания головного мозга,
2. Исследования функций отделов головного мозга,
3. Заболевания суставов,
4. Заболевания спинного мозга,
5. Заболевания внутренних органов брюшной полости,
6. Заболевания системы мочевыведения и воспроизводства,
7. Заболевания средостения и сердца ,
8. Заболевания сосудов.

Противопоказания

Абсолютные противопоказания:
1. Кардиостимулятор ,
2. Электронные или ферромагнитные протезы среднего уха,
3. Ферромагнитные аппараты Илизарова,
4. Крупные металлические внутренние протезы,
5. Кровоостанавливающие зажимы сосудов головного мозга.

Относительные противопоказания:
1. Стимуляторы нервной системы,
2. Инсулиновые насосы,
3. Другие виды внутренних ушных протезов,
4. Протезы сердечных клапанов,
5. Кровоостанавливающие зажимы на других органах,
6. Беременность (необходимо получить заключение гинеколога ),
7. Сердечная недостаточность в стадии декомпенсации,
8. Клаустрофобия (боязнь замкнутого пространства ).

Подготовка к исследованию

Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта ): не следует употреблять пищу за пять часов до процедуры.
Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век ), могут повлиять на результат. Все металлические украшения следует с себя снять.
Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.

Как проводится исследование?

Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.

Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.

Длительность обследования может составлять от 15 минут до 60 минут.
В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний ).

В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.


Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.

Использование контрастного вещества при ЯМР

Чаще всего процедура проходит без использования контраста. Однако в некоторых случаях это необходимо (для исследования сосудов ). В таком случае контрастное вещество вливается внутривенно с использованием катетера. Процедура аналогична любой внутривенной инъекции. Для этого вида исследования применяются особые вещества – парамагнетики . Это слабые магнитные вещества, частицы которых, находясь во внешнем магнитном поле, намагничиваются параллельно линиям поля.

Противопоказания к использованию контрастного вещества:

  • Беременность,
  • Индивидуальная непереносимость компонентов контрастного вещества, выявленная ранее.

Исследование сосудов (магнитно-резонансная ангиография)

С помощью этого метода можно проконтролировать как состояние кровеносной сети, так и движение крови по сосудам.
Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.

Показания:

  • Врожденные пороки сердца ,
  • Аневризма , расслоение ее,
  • Стеноз сосудов,

Исследование головного мозга

Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений , инсультов , а также новообразования.
Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах , нарушении координации.

При ЯМР головного мозга исследуются:
  • основные сосуды шеи,
  • кровеносные сосуды, питающие головной мозг,
  • ткани головного мозга,
  • орбиты глазниц,
  • более глубоко находящиеся части головного мозга (мозжечок, эпифиз, гипофиз , продолговатый и промежуточный отделы ).

Функциональная ЯМР

Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.

Исследование позвоночника

Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.

Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи , костные и хрящевые шипы, а также ущемления нервов.

Показания:

  • Изменение формы межпозвонковых дисков, в том числе грыжи,
  • Травмы спины и позвоночника,
  • Остеохондроз , дистрофические и воспалительные процессы в костях,
  • Новообразования.

Исследование спинного мозга

Проводится одновременно с обследованием позвоночника.

Показания:

  • Вероятность новообразований спинного мозга, очаговое поражение,
  • Для контроля над заполнением спинномозговой жидкостью полостей спинного мозга,
  • Кисты спинного мозга,
  • Для контроля над восстановлением после операций,
  • При вероятности заболеваний спинного мозга.

Исследование суставов

Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.

Используется для диагностики:

  • Хронических артритов ,
  • Травм сухожилий, мускул и связок (особенно часто используется в спортивной медицине ),
  • Переломов,
  • Новообразований мягких тканей и костей,
  • Повреждений, не обнаруживаемых иными методами диагностики.
Применяется при:
  • Обследовании тазобедренных суставов при остеомиелите , некрозе головки бедренной кости, стрессовом переломе, артрите септического характера,
  • Обследовании коленных суставов при стрессовых переломах, нарушении целостности некоторых внутренних составляющих (менисков, хрящей ),
  • Обследовании сустава плеча при вывихах , ущемлении нервов, разрыве капсулы сустава,
  • Обследовании лучезапястного сустава при нарушении стабильности, множественных переломах, ущемлении срединного нерва, повреждении связок.

Исследование височно-нижнечелюстного сустава

Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.

Показания:

  • Нарушение подвижности нижней челюсти,
  • Щелчки при открывании – закрывании рта,
  • Боли в виске при открывании – закрывании рта,
  • Боль при прощупывании жевательной мускулатуры,
  • Боль в мускулатуре шеи и головы.

Исследование внутренних органов брюшной полости

Обследование поджелудочной железы и печени назначается при:
  • Неинфекционной желтухе ,
  • Вероятности новообразования печени, перерождения, абсцесса , кист, при циррозе ,
  • В качестве контроля над ходом лечения,
  • При травматических разрывах,
  • Камнях в желчном пузыре или желчных протоках,
  • Панкреатите любой формы,
  • Вероятности новообразований,
  • Ишемии органов паренхимы.
Метод позволяет обнаружить кисты поджелудочной железы, исследовать состояние желчных протоков. Выявляются любые формирования, закупоривающие протоки.

Обследование почек назначается при:

  • Подозрении на новообразование,
  • Заболеваниях органов и тканей, находящихся возле почек,
  • Вероятности нарушения формирования органов мочевыведения,
  • В случае невозможности проведения экскреторной урографии.
Перед обследованием внутренних органов методом ядерно-магнитного резонанса необходимо провести ультразвуковое обследование.

Исследование при заболеваниях системы воспроизводства

Обследования малого таза назначаются при:
  • Вероятности новообразования матки , мочевого пузыря, простаты,
  • Травмах,
  • Новообразованиях малого таза для выявления метастазов,
  • Болях в области крестца,
  • Везикулите,
  • Для обследования состояния лимфатических узлов.
При раке простаты данное обследование назначается для обнаружения распространения новообразования на органы, находящиеся рядом.

За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.

Исследование в период беременности

Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.

Меры предосторожности

1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.

2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами ), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.

Перед применением необходимо проконсультироваться со специалистом.

Под термином «магнитный резонанс» понимается избирательное (резонансное) поглощение энергии переменного электромагнитного поля электронной или ядерной подсистемой вещества, подверженного действию постоянного магнитного поля. Механизм поглощения связан с квантовыми переходами в этих подсистемах между дискретными уровнями энергии, возникающими в присутствии магнитного поля.

Магнитные резонансы подразделяются обычно на пять видов: 1)циклотронный резонанс (ЦР); 2) электронный парамагнитный резонанс (ЭПР); 3) ядерный магнитный резонанс (ЯМР); 4) электронный ферромагнитный резонанс; 5) электронный антиферромагнитный резонанс.

Циклотронный резонанс . При ЦР наблюдается избирательное поглощение энергии электромагнитного поля в полупроводниках и металлах, находящихся в постоянном магнитном поле, обусловленное квантовыми переходами электронов между энергетическими уровнями Ландау. На такие эквидистантные уровни расщепляется квазинепрерывный энергетический спектр электронов проводимости во внешнем магнитном поле.

Суть физического механизма ЦР можно понять и в рамках классической теории. Свободный электрон движется в постоянном магнитном поле (направленном вдоль оси ) по спиральной траектории вокруг линий магнитной индукции с циклотронной частотой

где и - соответственно величина заряда и эффективная масса электрона. Включим теперь радиочастотное поле с частотой и с вектором перпендикулярным к (например, вдоль оси ). Если электрон имеет подходящую фазу своего движения по спирали, то, поскольку частота его вращения совпадает с частотой внешнего поля, он будет ускоряться, и спираль будет расширяться. Ускорение электрона означает увеличение его энергии, которое происходит за счет передачи ее от радиочастотного поля. Таким образом, резонансное поглощение возможно при выполнении следующих условий:

частота внешнего электромагнитного поля, энергия которого поглощается, должна совпадать с циклотронной частотой электронов ;

вектор напряженности электрического поля электромагнитной волны должен иметь компоненту, нормальную к направлению постоянного магнитного поля ;

среднее время свободного пробега электронов в кристалле должно превышать период циклотронных колебаний .

Метод ЦР используется для определения эффективной массы носителей в полупроводниках. По полуширине линии ЦР можно определить характерные времена рассеяния, и, тем самым, установить подвижность носителей. По площади линии можно установить концентрацию носителей заряда в образце.

Электронный парамагнитный резонанс . Явление ЭПР заключается в резонансном поглощении энергии электромагнитного поля в парамагнитных образцах, помещенных в постоянное магнитное поле , нормальное к магнитному вектору электромагнитного поля. Физическая сущность явления заключается в следующем.


Магнитный момент атома, имеющего неспаренные электроны, определяется выражением (5.35). В магнитном поле энергетические уровни атома благодаря взаимодействию магнитного момента с магнитным полем расщепляются на подуровни с энергией

где представляет собой магнитное квантовое число атома и принимает значение

Из (5.52) видно, что число подуровней равно , а расстояние между подуровнями составляет

Переходы атомов с низких на более высокие уровни могут происходить под действием внешнего электромагнитного поля. Согласно квантовомеханическим правилам отбора разрешенными переходами являются такие, при которых магнитное квантовое число изменяется на единицу, то есть . Следовательно, квант энергии такого поля должен равняться расстоянию между подуровнями

Соотношение (5.55) является условием ЭПР. Переменное магнитное поле резонансной частоты с одинаковой вероятностью будет вызывать переходы с нижних магнитных подуровней на верхние (поглощение) и наоборот (излучение). В состоянии термодинамического равновесия связь между заселенностями и двух соседних уровней определяется законом Больцмана

Из (5.56) видно, что состояния с более низкой энергией имеют большую населенность (). Поэтому число атомов, поглощающих кванты электромагнитного поля, в этих условиях будет преобладать над числом излучающих атомов; в итоге система будет поглощать энергию электромагнитного поля, что приводит к росту . Однако благодаря взаимодействию с решеткой поглощаемая энергия в виде тепла передается решетке, и обычно настолько быстро, что при используемых частотах отношение очень слабо отличается от своего равновесного значения (5.56).

Частоты ЭПР могут быть определены из (5.55). Подставляя значение и считая (чисто спиновый момент), получим для резонансной частоты

Из (5.57) видно, что в полях от до 1 Тл резонансные частоты лежат в интервале Гц, то есть в радиочастотной и СВЧ областях.

Условие резонанса (5.55) относится к изолированным атомам, обладающими магнитными моментами. Однако оно остается справедливым и для системы атомов, если взаимодействие между магнитными моментами пренебрежимо мало. Такой системой является кристалл парамагнетика, в котором магнитные атомы находятся на больших расстояниях один от другого.

Явление ЭПР было предсказано в 1923г. Я.Г.Дорфманом и экспериментально обнаружено в 1944 р. Е.К.Завойским. В настоящее время ЭПР используется как один из самых мощных методов изучения твердого тела. На основе интерпретации спектров ЭПР получают информацию о дефектах, примесях в твердых телах и электронной структуре, о механизмах химических реакций и т.д. На явлении ЭПР построены парамагнитные усилители и генераторы.

Ядерный магнитный резонанс . Тяжелые элементарные частицы - протоны и нейтроны (нуклоны), а, следовательно, построенные из них атомные ядра обладают собственными магнитными моментами, которые служат источником ядерного магнетизма. Роль элементарного магнитного момента по аналогии с электроном здесь играет ядерный магнетон Бора

Атомное ядро обладает магнитным моментом

где – -фактор ядра, – спиновое число ядра, которое принимает полуцелые и целые значения:

0, 1/2, 1, 3/2, 2, ... . (5.60)

Проекция ядерного магнитного момента на ось z произвольно выбранной системы координат определяется соотношением

Здесь магнитное квантовое число при известном принимает значений:

В отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, следовательно, являются вырожденными. Атомное ядро с отличным от нуля магнитным моментом, помещенное во внешнее постоянное магнитное поле , испытывает пространственное квантование, и его -кратно вырожденный уровень расщепляется в зеемановский мультиплет, уровни которого обладают энергиями

Если после этого на ядро воздействовать переменным полем, квант энергии которого равен расстоянию между уровнями (5.63)

то возникает резонансное поглощение энергии атомными ядрами, которое называется ядерным парамагнитным резонансом или просто ядерным магнитным резонансом .

В силу того, что много меньше , резонансная частота ЯМР заметно меньше частоты ЭПР. Так ЯМР в полях порядка 1 Тл наблюдается в области радиочастот.

ЯМР как метод исследования ядер, атомов и молекул получил разнообразные применения в физике, химии, биологии, медицине, технике, в частности, для измерения напряженности магнитных полей.

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и, как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот. Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии, основанной на фурье-преобразованиях полученного сигнала.

В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) заключается в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В методах ЯМР-интроскопии магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

Ферро- и антиферромагнитный резонанс . Физическая сущность ферромагнитного резонанса заключается в том, что под действием внешнего магнитного поля , намагничивающего ферромагнетик до насыщения, полный магнитный момент образца начинает прецессировать вокруг этого поля с ларморовой частотой , зависящей от поля. Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное , и изменять его частоту , то при наступает резонансное поглощение энергии поля. Поглощение при этом на несколько порядков выше, чем при парамагнитном резонансе, потому что магнитная восприимчивость, а, следовательно, и магнитный момент насыщения в них много выше, чем у парамагнетиков.

Особенности резонансных явлений в ферро- и антиферромагнетиках определяются в первую очередь тем, что в таких веществах имеют дело не с изолированными атомами или сравнительно слабо взаимодействующими ионами обычных парамагнитных тел, а со сложной системой сильно взаимодействующих электронов. Обменное (электростатическое) взаимодействие создает большую результирующую намагниченность, а с ней и большое внутреннее магнитное поле, что существенно изменяет условия резонанса (5.55).

От ЭПР ферромагнитный резонанс отличается тем, что поглощение энергии в этом случае на много порядков сильнее и условие резонанса (связь между резонансной частотой переменного поля и величиной постоянного магнитного поля) существенно зависит от формы образцов.

На явлении ферромагнитного резонанса основаны многие СВЧ-устройства: резонансные вентили и фильтры, парамагнитные усилители, ограничители мощности и линии задержки.

Антиферромагнитный резонанс (электронный магнитный резонанс в антиферромагнетиках ) – явление относительно большого избирательного отклика магнитной системы антиферромагнетика на воздействие электромагнитного поля с частотой (10-1000 ГГц), близкой к собственным частотам прецессии векторов намагниченности магнитных подрешеток системы. Это явление сопровождается сильным поглощением энергии электромагнитного поля.

С квантовой точки зрения антиферромагнитный резонанс можно рассматривать как резонансное превращение фотонов электромагнитного поля в магноны с волновым вектором .

Для наблюдения антиферромагнитного резонанса используются радиоспектрометры, аналогичные применяемым для изучения ЭПР, но позволяющие проводить измерения на высоких (до 1000 ГГц) частотах и в сильных (до 1 МГс) магнитных полях. Наиболее перспективны спектрометры, в которых сканируется не магнитное поле, а частота. Получили распространение оптические методы детектирования антиферромагнитного резонанса .

Содержание статьи

МАГНИТНЫЙ РЕЗОНАНС, резонансное (избирательное) поглощение радиочастотного излучения некоторыми атомными частицами, помещенными в постоянное магнитное поле. Большинство элементарных частиц, подобно волчкам, вращаются вокруг собственной оси. Если частица обладает электрическим зарядом, то при ее вращении возникает магнитное поле, т.е. она ведет себя подобно крошечному магниту. При взаимодействии этого магнитика с внешним магнитным полем происходят явления, позволяющие получить информацию о ядрах, атомах или молекулах, в состав которых входит данная элементарная частица. Метод магнитного резонанса представляет собой универсальный инструмент исследований, применяемый в столь различных областях науки, как биология, химия, геология и физика. Различают магнитные резонансы двух основных видов: электронный парамагнитный резонанс и ядерный магнитный резонанс.

Электронный парамагнитный резонанс (ЭПР).

Ядерный магнитный резонанс (ЯМР).

ЯМР был открыт в 1946 американскими физиками Э.Перселлом и Ф.Блохом. Работая независимо друг от друга, они нашли способ резонансной «настройки» в магнитных полях собственных вращений ядер некоторых атомов, например водорода и одного из изотопов углерода. Когда образец, содержащий такие ядра, помещают в сильное магнитное поле, их ядерные моменты «выстраиваются» подобно железным опилкам вблизи постоянного магнита. Эту общую ориентацию можно нарушить радиочастотным сигналом. По выключении сигнала ядерные моменты возвращаются в исходное состояние, причем быстрота такого восстановления зависит от их энергетического состояния, типа окружающих ядер и ряда других факторов. Переход сопровождается испусканием радиочастотного сигнала. Сигнал подается на компьютер, который обрабатывает его. Таким путем (метод компьютерной ЯМР-томографии) можно получить изображения. (При изменении внешнего магнитного поля малыми ступенями достигается эффект трехмерного изображения.) Метод ЯМР обеспечивает высокую контрастность разных мягких тканей на изображении, что крайне важно для выявления больных клеток на фоне здоровых. ЯМР-томография считается более безопасной, нежели рентгеновская, поскольку не вызывает ни разрушения, ни раздражения тканей

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС
.

ЯМР возникает вследствие квант. переходов ядер, индуцированных радиочастотным полем H1, с нижних энергетич. уровней на вышележащие. Переходы сопровождаются поглощением эл.-магн. энергии. Поле Н1 может быть линейно поляризованным, его можно разложить на 2 противоположно поляризованных по кругу поля, одно из к-рых и будет возбуждать ЯМР. Частота переходов должна удовлетворять условию:

.

где DMI - разность магн. квант. чисел уровней (интенсивный ЯМР наблюдается при DMI=1). ЯМР впервые наблюдался амер. физиком И. А. Раби в 1937 на изолированных ядрах в молекулярных и атомных пучках. В 1946 Э. Пёрселл и Ф. Блох (США) с сотрудниками разработали методы наблюдения ЯМР в конденсированных в-вах, где яд. взаимодействуют между собой и с окружением. Эти два рода вз-ствий восстанавливают в образце ( ядер по уровням энергии), нарушаемое полем Н1, и тем самым позволяют наблюдать резонансное поглощение в конденсированной среде. Релаксац. связаны с процессами установления и разрушения яд. намагниченности М. Прецессирующие в сильном поле Н0 магн. моменты m имеют как вдоль Н0, так и перпендикулярно ему. Суммы тех и других для ед. объёма в-ва определяют продольную (Mz) и поперечные (Мх и My) яд. намагниченности.

Вз-ствие спинов между собой (спин-спиновое взаимодействие) не может изменить их суммарной энергии и влиять на установление значения Mz. Чтобы изменить Mz, необходим обмен энергией спинов с окружением (с и и н -р е ш ё т о ч н о е ). Мх и Му, напротив, изменяются вследствие спин-спинового вз-ствия и (в идеальном случае) не зависят от спин-решёточного вз-ствия. Скорости изменения Mz, Мх и My характеризуют временами продольной T1 и поперечной T2 релаксации. В жидкостях обычно T1 и Т2 близки друг другу. Кристаллизация приводит к значит. уменьшению T2 (релаксационные процессы связаны с хар-ками движения молекул). В чистых диамагнитных кристаллах T1 достигает величины в неск. часов из-за малости внутрикристаллических полей и особенностей модуляции этих полей тепловыми колебаниями. Парамагнитные примеси приводят к резкому уменьшению T1, обусловленному действием магн. полей примесных ионов; для парамагнитных жидких растворов T1-10-3-10-4 с и зависит от концентрации парамагнитных молекул. Релаксац. процессы в металлах в основном определяются магн. вз-ствием эл-нов проводимости и ядер. Определяемое этим Т1 имеет при темп-ре 1-10 К значения от мс до десятков с, она зависит от темп-ры и чистоты образца.

Линия ЯМР имеет лоренцеву форму, определяемую в основном спин-спиновым вз-ствием, и ширину Dw, пропорц. 1/T2 В кристаллах спин-спиновое вз-ствие ядер обычно так велико, что линия расщепляется на неск. компонент. На форму линии оказывает влияние электрич. ядер, взаимодействующий с внутрикристаллич. электрич. полем. В сложных молекулах одинаковых ядер атомов, занимающих неэквивалентные положения, состоит из ряда линий. Напр., 6 атомов водорода этилового спирта вызывают появление 3 линий (рис. 3), расстояние между к-рыми значительно больше ширины линий (при частоте 40 МГц и H0=9350 Э это расстояние dH=24 Э). Этот, т. н. хим. , возникает как следствие разл. вз-ствия эл-нов неэквивалентных атомов с полем Н0.

.

Рис. 3. Спектр ЯМР протонов в чистом этиловом спирте. Расщепление резонансных линий групп ОН, СН2, СН3 обусловлено непрямым спин-спиновым вз-ствием.

Хим. сдвиг позволяет судить о структуре молекул в-ва. Спектры ЯМР усложнены из-за т. н. непрямого спин-спинового вз-ствия ядер, осуществляемого через посредство спиновых и орбитальных моментов эл-нов. В металлах в результате вз-ствия эл-нов проводимости с ядрами возникает сдвиг частоты (с д в и г Н а й т а).

ЯМР наблюдают с помощью радиоспектроскопов ( ЯМР). Образец исследуемого в-ва помещают как сердечник в катушку генерирующего контура (поле H1), расположенного в зазоре магнита, создающего поле H0 так, что H1^HO (рис. 4). При w=w0 наступает резонансное поглощение, что вызывает падение напряжения на контуре, в схему к-рого включена катушка с образцом.

.

Рис. 4. Схема спектроскопа ЯМР: 1 - катушка с образцом; 2 - полюса магнита; 3 - ВЧ генератор; 4 - усилитель и детектор; 5 - генератор модулирующего напряжения; 6 - катушки модуляции поля Н0.

Падение напряжения детектируется, усиливается и подаётся на развёртку осциллографа. Поле Н0 модулируется так, что оно меняется на неск. Э с частотой от 50 Гц до 1 кГц. Этой же частотой осуществляется горизонтальная осциллографа. На экране виден повторённый дважды поглощения. Аппаратура, применяемая для исследований разл. тонких эффектов ЯМР, сложнее, она снабжена автоматич. устройствами для записи спектров и т. п.

ЯМР как метод исследования ядер, атомов и молекул получил многообразные применения в физике, химии, биологии, технике. Исследованы механич., электрич. и магн. св-ва многих ядер, определены (с высокой точностью) нек-рые физ. константы, получены данные о св-вах в-в в жидком и крист. состояниях, о строении молекул, металлов, поведении в-в в живых организмах и т. д. На основе ЯМР разработаны способы измерения напряжённостей магн. полей (см. МАГНИТОМЕТР), методы контроля хода хим. реакций и др.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

(ЯМР)-резонансное поглощение эл.-магн. энергии в веществах, обусловленное ядерным парамагнетизмом; частный случай магнитного резонанса. ЯМР был открыт Ф. Блохом (F. Bloch) и Э. Парселлом (Э. Пёрселл, Е. Purcell) (США) в 1946. ЯМР наблюдается в сильном пост. магн. поле Н 0 . при одноврем. воздействии на образец слабого радиочастотного магн. поля, перпендикулярного Н 0 . ЯМР обусловлен наличием у ядер спинов I , соответствующих им моментов кол-ва движения J =I имагн. моментов

Здесь g я - гиромагн. отношение ядер; g я - ядерный фактор спектроскопич. расщепления ( Ланде множитель), имеющий разные значения для разл. ядер; b= е / 2 Мс- ядерный магнетон ( М- масса ядра), к-рый по абс. величине почти в 10 3 раз меньше магнетона Бора. Спины ядер, обладающих нечётным массовым числом А (общее число протонов и нейтронов), имеют полуцелые значения, кратные 1 / 2 . Ядра с чётным А либо вообще не имеют спина (I =0), если заряд Z (число протонов) чётный, либо имеют целочисленные значения спина (1, 2, 3 и т. д.).

Теоретическое описание. В соответствии с классич. представлениями, взаимодействие пост. магн. поля Н 0 с магн. моментом ядра m приводит к прецессии последнего вокруг Н 0 . счастотой

Резонансная частота w 0 зависит от g я; для протонов при H 0 = 10 4 . Э v 0 = w 0 /2p=42,577 МГц. Для др. ядер в том же магн. поле значения v 0 лежат в диапазоне 110 МГц. Радиочастотное магн. поле частоты w 0 , перпендикулярное Н 0 , вызывает изменение угла прецессии, т. е. меняет величину проекции ядерного магн. момента на направление поля Н 0 . Это сопровождается резонансным поглощением эл.-магн. энергии и обнаруживается по возникновению эдс индукции в катушке, окружающей образец. Разл. ядра характеризуются разными значениями w 0 , что позволяет их идентифицировать. Однако вследствие того, что слаб (в 10 5 10 8 раз слабее электронного парамагнетизма), ЯМР удаётся наблюдать только на образцах с большим числом исследуемых ядер (обычно 10 16) и с помощью высокочувствительных приборов и спец. методик.

Согласно квантовой теории, в поле Н 0 состояния ядерного спина квантованы, т. е. его проекция т, на направление поля может принимать только одно из значений: +I , + (I -1), ..., -I . В простейшем случае изолированных, невзаимодействующих ядер взаимодействия их магн. моментов m с полем описывается гамильтонианом, собств. значения к-рого характеризуют систему 2I+ 1 эквидистантных энергетич. уровней (рис. 1):

Расстояние между ними . Переменное эл.-магн. поле может вызвать переходы между этими уровнями в соответствии с правилами отбора Dm I = + 1.

Рис. 1. Схема энергетических уровней протона в магнитном поле (I = 1 / 2).

Поэтому при наличии поперечного осциллирующего магн. поля, удовлетворяющего условию резонанса, происходит поглощение эл.-магн. энергии:

Из выражения (4) видно, что резонансной частоты w 0 позволяет определить g я, g я и, следовательно, идентифицировать исследуемые ядра.

Релаксационные процессы. Ширина линии. О поглощении энергии эл.-магн. поля при резонансных переходах можно говорить, если число индуцированных переходов с ниж. уровня на верхний превышает число переходов в обратном направлении. При тепловом равновесии ниж. уровень более заселён, чем верхний , в соответствии с Больц-мана распределением:


Здесь Т- темп-pa; ; N 1 , N 2 - населённости ниж. и верх. уровней. При непрерывном воздействии резонансным радиочастотным полем величины N 1 и N 2 могут выравняться и резонансное поглощение может прекратиться (т. е. наступит насыщение).

Однако наряду с выравниванием населённостей уровней при резонансном поглощении энергии имеют место релак-сац. процессы взаимодействия спиновой системы со всей совокупностью окружающих её частиц, обладающих всеми, кроме спиновой, степенями свободы движения,-с атомами кристаллич. решётки, с частицами жидкости или газа и т. п. (процессы т. н. с п и н-р е ш ё т о ч н о й р е л а к с ац и и). Они сопровождаются безызлучательными (релаксационными) переходами между разл. состояниями ядер. Спин-фононное взаимодействие вследствие конечного времени жизни t 1 возбуждённого состояния ядра приводит к размытию энергетич. уровней ядра (см. Ширина уровня )и к изменению энергии системы спинов в поле Н 0 , определяемой продольной (вдоль Н 0)компонентой проекции магн. момента. Поэтому t 1 наз. в р е м е н е м п р о д о л ьн о й р е л а к с а ц и и. Размытие уровней, в свою очередь, приводит к т. н. однородному уширению линии спектра ЯМР, пропорциональному t 1 -1 .

В твёрдых телах и жидкостях существенны также процессы спин-спинового взаимодействия ядер. Они вызывают относит. изменение энергии спиновых состояний (т. е. вызывают размытие уровня), не изменяя времени жизни состояния. Полная энергия всей спиновой системы не изменяется. С п и н-с п и н о в а я р е л а к с а ц и я характеризуется временем t 2 . Примером спин-спиновых взаимодействий может служить прямое магн. диполь-дипольное взаимодействие магн. моментов соседних ядер в кристаллич. решётке. Каждый из двух взаимодействующих одинаковых диполей создаёт в месте расположения другого (на расстоянии r )локальное магн. поле Н лок . Полное поле, воздействующее на ядерный магн. момент, определяется суммой H 0 + H лок , а также поперечной переменной составляющей H (t )поля, создаваемого проекцией магн. момента прецессирующего соседнего диполя. Перем. поперечное поле H (t ) будет действовать подобно радиочастотному полю, приводя к релаксации (со временем t 2) поперечной составляющей вектора магн. момента (отсюда термин "в р е м я п о п е р е ч н о й р е л а к с а ц и и"). Спин-спиновая также приводит к уширению спектральной линии. В случае диполь-дипольного взаимодействия локальное поле (как и неоднородное по образцу поле Н 0)вызывает т. н. н е о д н о р о д н о е у ш и р е н и е, и поперечная релаксация, характеризующаяся временем t 2 , уширяет линию неоднородно. В непроводящих электрич. твёрдых телах и в полупроводниках обычно t 1 >> t 2 . Значения t 1 лежат в широких пределах от 10 -4 с для растворов парамагн. солей до неск. часов для чистых диамагн. кристаллов. Значения t 2 изменяются от 10 -4 с для кристаллов до нескольких с для диамагн. жидкостей.

Однородно уширенная спектральная линия описывается к р и в о й Л о р е н ц а, характеризующей затухающие осциллятора (рис. 2, а):

где Dv = (2pt 2) -1 . Полуширина линии составляет 2/t 2 . В твёрдых телах, где диполь-дипольные взаимодействия можно представить как набор разл. локальных эфф. магн. полей, может быть описана к р и в о й Г а у с с а (рис. 2,б):

Здесь v 2 >-среднеквадратичное отклонение, или т. н. в т о р о й м о м е н т. В жидкостях и газах тепловое ядер усредняет дипольное и нек-рые др. виды взаимодействий. Спектральные линии сужаются до долей Гц (эта область исследования ЯМР наз. с п е к т р о с к о п и е й в ыс о к о г о р а з р е ш е н и я). В кристаллах ширина линии ЯМР определяется величиной полей неподвижных соседних парамагн. ядер. Линии имеют ширину 10 2 -10 3 Гц и гауссову форму . Теория позволяет из анализа формы и угл. зависимости (угол между полем Н 0 и кристаллографич. направлениями) спектра ЯМР монокристалла определять расстояние между парамагн. ядрами, углы между их валентными связями, характер окружающих атомов и др.


Рис. 2. Форма спектральных линий: а- лоренцева, б- гауссова.

Плавление кристалла сопровождается сужением спектральных линий ЯМР за счёт теплового движения, усредняющего магн. взаимодействия ядер, и их диффузионного перемешивания. Сужение спектральных линий заметно проявляется, когда частота перескоков парамагн. атома ~ 10 4 Гц. Метод ЯМР применяется для исследования диффузионной подвижности атомов в суперионных проводниках или твёрдых электролитах .

На времена релаксации, ширину и форму линий ЯМР оказывает влияние взаимодействие электрич. квадруполь-ного момента ядра (при I> 1 / 2 ), характеризующего несферичность ядер, с локальным электрич. полем в кристалле. Квадрупольное взаимодействие может дать расщепление магн. подуровней ядер, по величине сравнимое и даже превосходящее расщепление в магн. поле. В частности, почти все в соединениях А III В V имеют большие величины ядерных спинов I и их ядра обладают значит. квадрупольными моментами. Особенно заметно проявление ядерных квадрупольных эффектов при взаимодействии с заряж. примесями или дефектами в полупроводниках.

Влияние электронов. В сильнолегированных полупроводниках могут проявляться эффекты ЯМР, характерные для металлов, в частности сдвиг резонансных частот (сдвиг Найта). Этот сдвиг обусловлен тем, что во внеш. поле Н 0 электроны проводимости создают в месте расположения ядра пост. магн. поле, смещающее резонансную частоту w 0 (обычно увеличивающее её по сравнению с полупроводником, имеющим малую концентрацию свободных носителей заряда).

Экранирующее электронной оболочки атома также приводит к сдвигу резонансной частоты (хим. сдвиг). Магн. поле Н 0 индуцирует в электронной оболочке атома электронные токи, создающие дополнит. поле на ядрах, противоположное внеш. полю. Этот сдвиг пропорционален Н 0 и составляет 10 -3 10 -6 от H 0 . Хим. сдвиг меньше сдвига Найта, а его знак противоположен. Хим. сдвиг зависит от структуры электронных оболочек и от характера хим. связей, что позволяет по величине сдвига судить о структуре молекул или примесных комплексов.

С учётом перечисленных факторов системы парамагн. ядер в твёрдом теле может быть представлен в виде

Здесь -оператор взаимодействия с магн. полем (зе-емановский член), -гамильтониан спиновых (диполь-дипольных) взаимодействий, -гамильтониан квадрупольных взаимодействий, -хим. сдвиг, -сдвиг Найта.

Экспериментальные методы. ЯМР наблюдают, изменяя либо H 0 (стационарный метод), что технически удобнее, либо частоту перем. поля (импульсный метод). Для наблюдения ЯМР стационарным методом необходимо создать магн. поле высокой степени однородности, величину к-рого Н 0 можно плавно изменять. Образец помещается в индукц. катушку между полюсами магнита. Катушка используется и для возбуждения радиочастотного поля H 1 , и для регистрации изменений сопротивления перем. току, к-рые происходят в момент резонанса [схема Пар-селла (Пёрселла)]. По схеме Блоха перпендикулярно катушке с образцом располагается отд. катушка приёмного устройства. Скорость прохождения через резонанс в стационарном методе выбирается меньше скорости релаксац. процессов. При резонансе в катушке возникает радиочастотный индукц. сигнал, содержащий различающиеся по фазе на 90° составляющие, пропорциональные дисперсии и поглощению эл.-маги. энергии (т. н. сигнал дисперсии и сигнал поглощения). Обычно регистрируют сигнал поглощения, что позволяет улучшить разрешение близлежащих линий спектра. Для обнаружения слабых сигналов используются мостовые схемы и синхронное на частоте модуляции поля Н 0 с последующим усилением. Сигнал регистрируется самописцем или осциллографом.

Стационарные методы ЯМР относительно просты и надёжны, им свойственна существ. однозначность интерпретации результатов. Однако при исследовании широких линий ЯМР в твёрдых телах большую информацию о механизмах ядерных взаимодействий можно получить с помощью импульсных (нестационарных) методов с использованием фурье-преобразований. Применение этих методов ЯМР обусловлено возможностью усреднения нек-рых взаимодействий и сужением широких линий, хотя нек-рые взаимодействия можно усреднить, не пользуясь импульсным режимом, напр. за счёт усреднения движений ядер в координатном пространстве. Гамильтониан диполь-дипольного спинового взаимодействия содержит множитель (1-3 cos 2 q ij), где q - угол между направлением Н 0 . и радиусом-вектором, соединяющим спины ядер I . Обращение в 0 этого множителя происходит при угле q ij = arccos (1/. 54°44", поэтому быстрое вращение образца (до 10 5 об/мин) под углом q усредняет часть гамильтониана диполь-дипольного взаимодействия в монокристалле и приводит к сужению спектральной линии.

Усреднение спиновых взаимодействий при использовании импульсного метода- ЯМР происходит за счёт "взбалтывания" спинов ядер, практически не смещающихся из узлов неподвижного кристалла. Применение последовательности импульсов радиочастотного поля Н 1 с длительностью, меньшей времени спин-спиновой релаксации t 2 , позволяет осуществить селективное усреднение нек-рых взаимодействий и исследовать хим. сдвиг и характер межатомных связей в кристаллах .

Методы ЯМР широко используются в органич. химии для изучения структуры и состава хим. соединений, а также при исследовании динамики и механизмов нек-рых хим. реакций. Спектры узких линий ЯМР характеризуются хим. сдвигами групп линий, их структурой (числом линий в группе) и интенсивностью поглощения, пропорциональной концентрации исследуемых атомов в определённом окружении. Т. о., по спектрам ЯМР можно определить вид и расположение атомов, окружающих парамагн. ядро, электронную структуру и характер внутримолекулярных взаимодействий. Парамагн. ядро водорода, входящего в разл. органич. , обладает наиб. величиной магн. момента по сравнению с др. ядрами и является удобным объектом для наблюдения ЯМР (протонный магн. резонанс, ПМР). Величины хим. сдвигов узких линий ПМР в разл. комплексах и соединениях позволяют получить, напр., сведения о характере водородных связей. Для органич. соединений существуют таблицы и диаграммы хим. сдвигов водорода в разл. молекулах . Наряду с протонами в качестве парамагн. зондов в хим. соединениях могут использоваться ядра 19 F, 14 N, 15 N, 31 Р, 13 С, 29 Si.

В твёрдых телах из-за отсутствия усреднения спин-спиновых взаимодействий наблюдаются широкие линии ЯМР. При исследовании ЯМР в металлах по величине сдвига Найта можно определить магн. восприимчивость c s и электронную на исследуемом ядре. Сдвиги Найта исследовались также в жидких металлах (с узкими линиями ЯМР) и сверхпроводниках I и II рода.

В ионных кристаллах диэлектриков с малым числом свободных электронов может проявиться хим. сдвиг спектральной линии ЯМР. Однако из-за большой ширины спектральной линии в стационарных методах ЯМР хим. сдвиги определяются с трудом и для их исследования обычно используется импульсная методика ЯМР.

Применение ЯМР в исследованиях полупроводников . Измерение зависимости времени спин-решёточной релак-сации на ядрах 29 Si-изотопа кремния с отличным от О спином - от концентрации электронов и дырок в полупроводнике, а также от степени его компенсации позволяет проверить теоретич. модели релаксац. процессов и их особенности в полупроводниках электронного (n ) и дырочного ( р )типов проводимости. По изменению характера спин-решёточной релаксации на ядрах 29 Si и появлению сдвига Найта при концентрации носителей заряда n = 4 . 10 18 см -3 можно установить переход от полупроводникового к металлич. типу проводимости, а также характер этого перехода. Аналогичные исследования осуществлены на ядрах 73 Ge (I 0) в монокристаллах германия. Ядра всех элементов, образующих решётку соединений A III B V , за исключением Р (I = 1 / 2), обладают квадруполь-ными моментами Q 0. Это проявляется и в температурных зависимостях релаксац. характеристик, в частности в ускорении спин-решёточной релаксации за счёт квад-рупольных эффектов.

Хим. сдвиг тем больше, чем больше число электронов в оболочке атома и чем меньше эфф. заряд оболочек соседних атомов в кристалле. Наиб. исследованы соединения A III B V , в к-рых хим. сдвиг достигает 10 2 -10 3 миллионных долей от Н 0 . Величины хим. сдвига на ядрах 11 В, 31 Р, 71 Ga, 115 In, 121 Sb коррелируют со значениями эфф. заряда соседних ядер.

ЯМР применяется также для изучения адсорбции газов и жидкостей поверхностью полупроводников. Адсорбция парамагн. ядер уменьшает ядерных спинов жидкой или газообразной фазы, что приводит к изменению ширины спектральной линии ЯМР. Адсорбция влияет также на времена спин-спиновой и спин-решёточной релаксаций .

Величина диполь-дипольного взаимодействия парамагн. ядер изменяется в зависимости от ориентации магн. поля Н 0 относительно кристаллографич. осей. Изучение этой анизотропии даёт возможность определить взаимную ориентацию спинов ядер, расстояния между ядрами, характер и симметрию ближайшего окружения парамагн. центра, а также исследовать структурные кристаллов. При взаимодействии большого числа парамагн. ядер анализ сложных спектров ЯМР осуществляют с помощью т. н. второго момента спектральной линии, к-рый при взаимодействии одинаковых ядер описывается ф-лой Ван Флека . Второй момент определяется среднеквадратичной величиной локальных магн. полей, созданных на ядре всеми др. ядерными диполями. Каждая структурная модель характеризуется определ. значениями величины второго момента, что успешно применяется при анализе структуры стеклообразных полупроводников. Существуют программы Для расчёта на вторых моментов линий ЯМР по структурным моделям для монокристаллов произвольной сингонии .

Для соединений A III B V с решёткой ZnS исследованы разл. магн. взаимодействия и их влияние на второй момент спектральной линии. Аналогичные расчёты позволили оценить концентрацию собств. дефектов в GaAs, установить их вид, место нахождения и заряд . Изучение влияния примесей на форму спектров ЯМР позволяет определить положение примесей в решётке и их концентрации, а также влияние примесей на эффекты экранирования градиентов электрич. полей в кристалле.

Исследования методом ЯМР протонов в гидрированном аморфном Si обнаружили кластеры моногидратов и позволили определить их ср. размеры.

При исследовании полупроводниковых кристаллов широко используются методы двойного электронно-ядерного резонанса и оптич. поляризации ядер (см. Оптическая ориентация в п о л у п р о в о д н и к а х).

Лит.: 1) Абрагам А., Ядерный , пер. с англ., М., 1963; 2) Гюнтер X., Введение в курс спектроскопии ЯМР, пер. с англ., М., 1984; 3) Керрингтон А., Мак-Лечлан Э., Магнитный резонанс и его применение в химии, пер. с англ., М.1970; 4) Ядерный ; под ред. П. М. Бородина, Л., 1.982; 5) Б узник В. М., Ядерный резонанс в ионных кристаллах, Новосиб., 1981; 6),Хеберлен У., Меринг М., ЯМР высокого разрешения в твердых телах, пер. с англ., М., 1980; 7) Рембeза С. И., Парамагнитный резонанс в полупроводниках, М., 19,88; 8) Киселев В. Ф., Крылов О. В., Адсорбционные процессы на поверхности полупроводников и диэлектриков, М., 1978; 9) Бон-да. И. Рембеза.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


© 2024 lobnyaremont.ru - МастерСтрой