Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок. Выбор цикла парогазовой установки и принципиальной схемы пгу Пгу газовая установка

Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок. Выбор цикла парогазовой установки и принципиальной схемы пгу Пгу газовая установка

20.10.2023

Парогазовые установки производят электричество и тепловую энергию. Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. Топливом отечественных ПГУ является природный газ, однако им может служить как природный газ, так и продукты нефтехимической промышленности, например мазут. В парогазовых установках на одном валу с газовой турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей часть своей энергии и далее продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где вырабатывается поступающий на паровую турбину водяной пар.

Сооружение установок комбинированного цикла (или ПГУ) является в последнее время основной тенденцией развития мировой и отечественной теплоэнергетики. Сочетание циклов на базе ГТУ, т.е. газотурбинной установки, и паротурбинной установки (циклов Брайтона и Ренкина соответственно) обеспечивает резкий скачок тепловой экономичности электростанции, при этом около двух третей её мощности приходится на ГТУ. Пар, выработанный за счет тепла отработанных газов ГТУ, как уже отмечалось, приводит в действие паровую турбину.

Общее представление о котлах-утилизаторах в схеме ПГУ можно получить на основе краткого описания КУ типа HRSG:

Котел-утилизатор типа HRSG в составе блока ПГУ предназначен для получения перегретого пара высокого, среднего и низкого давлений за счет использования тепла горячих выхлопных газов ГТУ.

Котел-утилизатор HRSG – вертикального типа, барабанный, с естественной циркуляцией в испарительных контурах высокого, среднего и низкого давлений, с собственным несущим каркасом.

Конструкция котла-утилизатора обеспечивает возможность проведения предпусковых и эксплуатационных водно-химических промывок пароводяного тракта, а также консервации внутренних поверхностей котла при остановах.

По пароводяному тракту гидравлическая схема котла-утилизатора состоит из трёх самостоятельных контуров с различным уровнем давлений:

тракт низкого давления;

тракт среднего давления;

тракт высокого давления.

Поверхности нагрева труб (испарители, пароперегреватели и т.п.) этого котла располагаются горизонтально. Все они имеют змеевиковую конструкцию трубных систем, которые объединяются коллекторами и с помощью отводящей системы трубопроводов, подсоединяются к барабану-сепаратору. При таком исполнении термические напряжения при изменениях нагрузки и пусках существенно ниже, трубные пакеты могут свободно расширяться, что сводит к минимуму риск защемления, приводящего к разрушению труб.

Трубки теплообменников секций ВД, СД и НД изготовлены со сплошным оребрением с учетом конвективного характера теплообмена между горячими газами из ГТУ и поверхностями теплообмена. Оребрение выполнено из углеродистой стали диаметром 62-68 мм и толщиной 1 мм.

Система очистки пара от капель котловой воды упрощенная, в ней отсутствуют внутрибарабанные циклоны, как это предусматривается на обычных паровых котлах. Имеются линии периодической продувки из барабанов, однако не предусмотрены специальные линии периодической продувки испарителей из нижних точек, где эти линии более актуальны в отношении вывода из котла накопившихся шламовых образований.

Из барабана насыщенный пар поступает в пароперегреватель высокого давления.

Котел – утилизатор HRSG работает на отходящих газах газовой турбины блока. По ходу движения дымовых газов поверхности нагрева котла расположены в следующей последовательности:

выходная ступень пароперегревателя ВД;

выходная ступень промперегрева;

вторая часть входной ступени пароперегревателя ВД;

входная ступень промперегрева;

первая часть входной ступени пароперегревателя ВД;

испаритель ВД;

экономайзер ВД вторая ступень;

пароперегреватель СД;

пароперегреватель НД;

экономайзер ВД первая ступень;

испаритель СД;

экономайзер СД выходная часть первой ступени / экономайзер ВД выходная часть первой ступени;

испаритель НД;

экономайзер СД входная часть первой ступени / экономайзер ВД входная часть первой ступени;

подогреватель конденсата (экономайзер НД).

В выхлопной части котла установлен глушитель и заслонка, предотвращающая попадания осадков в котел во время его стоянки.

Более подробные сведения по этому котлу-утилизатору можно найти в нашем примере "

Парогазовыми называются энергетические установки, в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле. Отличается от паросиловых и газотурбинных установок повышенным КПД.

Принципиальная схема парогазовой установки (из лекции Фоминой).

ГТ ЭГ пар

компрессор Котёл утилизатор К

воздух ЭГ

питательная вода

КС – камера сгорания

ГТ – газовая турбина

К – конденсационная паровая турбина

ЭГ – электрогенератор

Парогазовая установка состоит из двух отдельныхустановок: паросиловой и газотурбинной.

В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтянойпромышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Перспективы развития ПГУ (из учебника Аметистова).

1. Парогазовая установка - самый экономичный двигатель, используемый для получения электроэнергии. Одноконтурная ПГУ с ГТУ, имеющей начальную температуру примерно 1000 °С, может иметь абсолютный КПД около 42 %, что составит 63 % от теоретического КПД ПГУ. Коэффициент полезного действия трехконтурной ПГУ с промежуточным перегревом пара, в которой температура газов перед газовой турбиной находится на уровне 1450 °С, уже сегодня достигает 60 %, что составляет 82 % от теоретически возможного уровня. Нет сомнений в том, что КПД можно увеличить еще больше.



2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит ее тепловое загрязнение. Поэтому уменьшение тепловых выбросов от ПГУ по сравнению с паросиловой будет ровно в той степени, на сколько меньше расход топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше.

5. ПГУ имеет умеренную стоимость установленной единицы мощности, что связано с меньшим объемом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

6. ПГУ имеют существенно меньший строительный цикл. ПГУ, особенно одновальные, можно вводить поэтапно. Это упрощает проблему инвестиций.

Парогазовые установки практически не имеют недостатков, скорее следует говорить об определенных ограничениях и требованиях к оборудованию и топливу. Установки, о которых идет речь, требуют использования природного газа. Для России, где доля используемого для энергетики относительно недорого газа превышает 60 % и половина его используется по экологическим соображениям на ТЭЦ, имеются все возможности для сооружения ПГУ.

Все это говорит о том, что строительство ПГУ является преобладающей тенден­цией в современной теплоэнергетике.

КПД ПГУ утилизационного типа:

ηПГУ = ηГТУ + (1- ηГТУ)*ηКУ*ηПТУ

ПТУ - паротурбинная установка

КУ – котёл-утилизатор

В общем случае КПД ПГУ:

Здесь - Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу - количество теплоты, подведенной к паровой среде в котле.

1. Принципиальные тепловые схемы отпуска пара и тепла с ТЭЦ. Коэффициент теплофикации α ТЭЦ. Способы покрытия пиковой тепловой нагрузки на ТЭЦ,

ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС, принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.

сравнительный анализ способов регулирования тепловой нагрузки.

Качественное регулирование.

Преимущество: стабильный гидравлический режим тепловых сетей.

Недостатки:

■ низкая надежность источников пиковой тепловой мощности;

■ необходимость применения дорогостоящих методов обработки подпиточной воды теплосети при высоких температурах теплоносителя;

■ повышенный температурный график для компенсации отбора воды на ГВС и связанное с этим снижение выработки электроэнергии на тепловом потреблении;

■ большое транспортное запаздывание (тепловая инерционность) регулирования тепловой нагрузки системы теплоснабжения;

■ высокая интенсивность коррозии трубопроводов из-за работы системы теплоснабжения большую часть отопительного периода с температурами теплоносителя 60-85 ОС;

■ колебания температуры внутреннего воздуха, обусловленные влиянием нагрузки ГВС на работу систем отопления и различным соотношением нагрузок ГВС и отопления у абонентов;

■ снижение качества теплоснабжения при регулировании температуры теплоносителя по средней за несколько часов температуре наружного воздуха, что приводит к колебаниям температуры внутреннего воздуха;

■ при переменной температуре сетевой воды существенно осложняется эксплуатация компенсаторов.

Подходят к концу работы по модернизации на территории Кировской ТЭЦ-3 с применением ПГУ (парогазовой установки). Станция обеспечивает тепловой энергией (отопление и горячая вода) город Кирово-Чепецк и электроэнергией потребителей Кировской области. Электростанция начала свою работу в 1942 году и до ввода в эксплуатацию нового энергетического оборудования установленная электрическая мощность станции составляла 160 МВт, а тепловая - 813 Гкал/ч. На энергетических котлах станции сжигаются - природный газ, мазут, кузнецкий уголь. Применение ПГУ позволит увеличить электрическую и тепловую мощность станции более чем в два раза - до 390 МВт.

Строительство ПГУ 230 МВт на Кировской ТЭЦ-3 началось 29 февраля 2012 года. Энергетиками КЭС-Холдинга за короткое время была проделана огромная работа и уже на лето 2014 года намечено проведение торжественного пуска.

Электрическая мощность парогазовой установки - 230 МВт, тепловая - 136 Гкал/ч. Вводимая парогазовая установка - самое экономичное и экологичное генерирующие оборудование в Кировской области. Отличительная особенность станции - использование первой в регионе градирни вентиляторного типа. Стоимость проекта составила 10,3 млрд.руб.

На сегодняшний день применение парогазовой технологии - оптимальное решение для традиционной тепловой энергетики. Блоки этого типа имеют оптимальные параметры по стоимости единицы установленной мощности и экономической эффективности. За счет повторного использования энергии сгорания газа, их КПД существенно выше традиционных паросиловых блоков. Так, суммарная мощность построенного блока равна 230 мегаваттам. Вся старая часть Кировской ТЭЦ-3 имеет максимальную мощность 149 мегаватт. При этом КПД ПГУ - 52% против 30% на старом блоке. Еще одна особенность ПГУ - это низкий уровень выбросов вредных веществ в атмосферу. Наконец, парогазовый блок имеет существенно меньший строительный цикл в сравнении с традиционными паросиловыми блоками.

Дорога на ПГУ проходит мимо открытого распределительного устройства. Вот где весь Чепецкий асфальт!

Картина маслом "2,5 трубы на ТЭЦ-3".

Труба выведена из эксплуатации и находится в процессе демонтажа.

Новое распределительное устройство.

Новенькие трансформаторы отделены друг от друга огнезащитными перегородками.

Оборудование ОРУ (выключатели, трансформаторы тока и напряжения, разъединители).

Фото с крыши здания РЩУ (Релейный Щит Управления).

Эстакада токопроводов в районе открытой установки трансформаторов.

Новое и старое.

Корпус ТЭЦ-3 - из кирпича, все последующие ТЭЦ построены с применением бетона и ЖБИ.

Теперь пройдемся по этапам получения энергии.

Топливо для ПГУ (газ) подается сначала на пункт подготовки газа, а потом по эстакаде попадает в турбину.

Сверху к газовой турбине подводится очищенный воздух от комплексного очистительного устройства. При этом требования к чистоте воздуха такие, что внутрь воздуховода персонал может войти только в халатах и без обуви. Этот воздух после специальной обработки намного чище того которым мы дышим.

Конструкция внутри здания по размерам сопоставима с двумя грузовыми Ж/Д-вагонами.

Идут работы по монтажу коммуникаций.

Принцип работы этой турбины аналогичен работе двигателя авиалайнера. Воздух очищается, сжимается в компрессоре, затем к нему подводится природный газ. Газы, образующиеся при его сжигании, вращают турбину, а она, в свою очередь, генератор.

Чтобы снизить вибрацию, турбину установили на специальные пружины.

Полученное электричество по токопроводам поступает на трансорматоры.

Далее, продукты сгорания попадают в котел утилизатор. Он также изготовлен отечественной фирмой ОАО «ЭМАльянс». Этот уникальный котлоагрегат спроектирован специально для этого объекта и не имеет аналогов. Его высота составляет 30 метров, он имеет два контура, в которых вырабатывается пар низкого и высокого давления.

Коммуникации наверху.

Труба дымоудаления.

Пар из котла утилизатора вращает паровую турбину Т-63 с генератором мощностью 80 мегаватт. Она изготовлена на Урале специально для этого проекта и предназначена для работы только в составе парогазового блока. В эту турбину вложены последние передовые разработки отечественного турбостроения.

Установкой на фундамент статора турбогенератора (самого тяжелого элемента паровой турбины весом 105 тонн) занимались голландские специалисты фирмы «ALE Heavylift LLC». Они смонтировали специальную такелажную систему и с помощью особых домкратов и сверхпрочных тросов статор в течение нескольких часов поднимали на высоту 20 метров и устанавливали на фундаменте.

Для обслуживания всего оборудования собран мостовой кран.

Баки запаса конденсата.

Главный щит управления.

В помещении сборок задвижек также начали установку оборудования и раскладку кабелей АСУ ТП котельного отделения. Выполнены работы по монтажу конструкций под кабели, идет монтаж кабельных коробов, продолжается прокладка силовых кабелей, подключение оборудования.

НИЗКОНАПОРНЫЕ И ВЫСОКОНАПОРНЫЕ ПАРОПРОИЗВОДЯЩИЕ УСТАНОВКИ
Для производства электроэнергии находят применение комбинированные парогазовые установки (ПГУ), объеди¬ненные в единой тепловой схеме. При этом достигается снижение удельного расхода топлива и капитальных затрат. Наибольшее применение находят ПГУ с высоконапорной паропроизводящей установкой (ВНППУ) и с низконапорной паропроизводящей установкой (ННППУ). Иногда ВНППУ называют высоконапорными котлами.
В отличие от котлов, работающих под разряжением с газовой стороны, в топочной камере и газоходах котлов высоконапорных и с наддувом создается давление относительно небольшое у ННППУ (0,005-0,01 МПа) и повышенное у ВНППУ (0,5-0,7 МПа).
Работа котла под давлением характеризуется рядом по¬ложительных особенностей. Так, полностью исключаются присосы воздуха в топку и газоходы, что приводит к умень¬шению потери теплоты с уходящими газами, атакже к сни¬
жению расхода электроэнергии на их перекачку. Повыше¬ние давления в топочной камере открывает возможность преодоления всех воздушных и газовых сопротивлений за счет дутьевого вентилятора (дымососная тяга может отсут¬ствовать), что также приводит к уменьшению расхода элек¬троэнергии в связи с работой дутьевого устройства на хо¬лодном воздухе.
Создание избыточного давления в топочной камере при¬водит к соответствующей интенсификации процесса горе¬ния топлива и позволяет существенно повысить скорости газов в конвективных элементах котла до 200-300 м/с. При этом увеличивается коэффициент теплоотдачи от газов к по¬верхности нагрева, что приводит к уменьшению габаритов котла. Вместе с тем его работа под давлением требует плотной обмуровки и различных приспособлений против выбивания продуктов сгорания в помещение.

Рис. 15.1. Принципиальная схема парогазовой установки с ВНППУ:
/ - забор воздуха; 2 - компрессор; 3 - топливо; 4 - камера сгорания; 5 -газо¬вая турбина; 6 - выхлоп отработавших газов; 7 - электрогенератор; 8 - котел; 9 - паровая турбина; 10 - конденсатор; // - насос; 12 - подогреватель высокого давления; 13 - регенеративный подогреватель на отходящих газах (экономайзер)

На рис. 15.1 показана схема парогазовой установки (ПГУ) с высоконапорным котлом. Сжигание топлива в топ¬ке такого котла происходит под давлением до 0,6-0,7 МПа, что приводит к значительному сокращению затрат метал¬ла на тепловоспринимающие поверхности. После котла про¬дукты сгорания поступают в газовую турбину, на валу которой находятся воздушный компрессор и электрогенера-
тор. Пар из котла поступает в турбину с другим электрогене¬ратором.
Термодинамическая эффектив¬ность комбинированного парога¬зового цикла с высоконапорным котлом, газовой и пароводяной турбинами показана на рис. 15.2. На Т, я-диаграмме: площади 1-2-3-4-1 - работа газовой ступе¬ни Ьт, площадь сйе\аЬс - работа паровой ступени Ь„; 1-5-6-7-1 - потеря теплоты с уходящими га¬зами; сЬдпс-потеря теплоты в конденсаторе. Газовая ступень ча¬стично надстраивается над паро¬вой ступенью, что приводит к значительному увеличению термического КПД установки.
Находящийся в эксплуатации высоконапорный котел, разработанный НПО ЦКТИ, имеет производительность 62,5 кг/с. Котел водотрубный, с принудительной циркуля¬цией. Давление.пара 14 МПа, температура перегретого па¬ра 545 °С. Топливо---газ (мазут), сжигается с объемной плотностью тепловыделения около 4 МВт/м3. Выходящие яз котла продукты сгорания при температуре до 775 °С и давлении до 0,7 МПа расширяются в газовой турби¬не до давления, близкого к атмосферному. Отработав¬шие газы при температуре 460 °С поступают в экономай¬зер, за которым уходящие газы имеют температуру око¬ло 120 °С.
Принципиальная тепловая схема ПГУ с ВНППУ мощ¬ностью 200 МВт показана на рис. 15.3. Установка включа¬ет паровую турбину К-160-130 и газовую турбину ГТ-35/44-770. Из компрессора воздух поступает в топку ВНППУ, куда подается и топливо. Высоконапорные газы после пароперегревателя при температуре 770 °С поступа¬ют в газовую турбину, а затем в экономайзер. В схеме пре¬дусмотрена дополнительная камера сгорания, обеспечива¬ющая номинальную температуру газов перед ГТУ при из¬менении нагрузки. В комбинированных ПГУ удельный рас¬ход топлива на 4-6 % меньше, чем в обычных паротурбин¬ных, снижаются также капиталовложения.


Рис. 15.2. Т, ї-диаграмма для комбинированного парогазового цикла

Парогазовая установка ПГУ является комбинированной установкой, состоящей из ГТУ, котла – утилизатора (КУ) и паровой турбины (ПТ). Реализация парового и газового циклов осуществляется в раздельных контурах, т. е., при отсутствии контакта между продуктами сгорания и парожидкостным рабочим телом. Взаимодействие рабочих тел осуществляется только в форме теплообмена в теплообменных аппаратах поверхностного типа.

Использование парогазовых установок является одним из возможных и перспективных направлений снижения топливно – энергетических затрат.

ПГУ термодинамически удачно объединяют в себе параметры ГТУ и паросиловых установок:

ГТУ работают в зоне повышенных температур рабочего тела;

Паросиловые – приводятся в действие уже отработавшими, уходящими из турбины продуктами сгорания, т.е. выполняют роль утилизаторов и используют бросовую энергию.

КПД установки повышается в результате термодинамической надстройки высокотемпературного газового цикла паровым циклом, что сокращает потери теплоты с уходящими газами в газовой турбине.

Таким образом, ПГУ можно рассматривать как третий этап усовершенствования турбинных агрегатов. ПГУ являются перспективными двигателями, как высокоэкономичные, с малыми капиталовложениями. Отличные качества парогазовых установок определили области их применения. ПГУ широко применяются в энергетике и др. областях ТЭК.

Сдерживает широкое применение таких установок отсутствие единой точки зрения о наиболее рациональных направлениях утилизации тепла ГТУ.

В настоящее время перспективной схемой ПГУ для использования на МГ также является чисто утилизационная схема ПГУ с полной надстройкой цикла, в которой парогенератор обогревается только отходящими газами газовой турбины (рис. 6.1).

По этой схеме продукты сгорания ГТУ после турбины низкого давления (ТНД) поступают в котел-утилизатор (КУ) для выработки пара высокого давления. Получаемый пар из КУ поступает в паровую турбину (ПТ), где расширяясь, совершает полезную работу, идущую на привод электрогенератора или нагнетателя. Отработанный пар после ПТ поступает в конденсатор К, где конденсируется и затем питательным насосом (ПН) снова подается в котел – утилизатор. Термодинамический цикл парогазовой установки приведен на рис. 6.2. Высокотемпературный газовый цикл ГТУ начинается с процесса сжатия воздуха в осевом компрессоре: 1 → 2. В камере сгорания (а также в регенераторе, если он есть) осуществляется подвод теплоты 2 → 3; генерированные продукты сгорания поступают в газовую турбину, где расширяясь, совершают работу, процесс 3 → 4; и наконец, отработавшие газы отдают свое тепло в котле утилизаторе, нагревая воду и пар, 4 → 5. Остаток низкотемпературного тепла остается неиспользованным и передается в окружающую среду, 5 → 1.


Рисунок 6.1 - Принципиальная схема ПГУ с котлом – утилизатором

Рисунок 6.2 - Схема цикла парогазовой установки в координатах Т-S

Парогазовый цикл образован последовательностью процессов: 1" – 2" - 3" – 4"- 5" – 1" (рис. 6.2). Условно цикл начинается процесса 1" – 2" –подвода теплоты в экономайзере. Вода, поступившая из конденсатора, имеет низкую температуру, равную 39 °С (при давлении в конденсаторе Р нп = 0,007 МПа). Нагревается она до температуры кипения, порядка 170…210 °С, при постоянном давлении, соответствующем рабочему давлению котла 0,8…2,0 МПа. 2" – 3" – процесс испарения воды в испарителе и превращения ее в насыщенный пар. 3" – 4" – перегрев пара в перегревателе; 4" – 5" – процесс расширения пара в паровой турбине с совершением работы и потерей температуры; 5" – 1" – пар конденсируется в конденсаторе К, и образовавшаяся вода вновь подается в котел - утилизатор КУ. Цикл замыкается.

Мощность собственно паровой турбины (ПТ) зависит от действительного теплоперепада, или энтальпии, по паровой турбине и расхода пара. Расход пара и параметры пара определяются работой котла-утилизатора. Принципиальная схема котла – утилизатора показана на рис. 6.3.

Котел – утилизатор – это паровой котел с принудительной циркуляцией, не имеющий собственной топки и обогреваемый уходящими газами какой – либо энергетической установки.

Поэтому бросовой теплоты выхлопных газов ГТУ, с температурой порядка 400 °С, вполне достаточно для эффективной работы утилизационных установок.

По ходу котла устанавливаются последовательно теплообменные аппараты: водяной экономайзер "Э", испаритель "И" и пароперегреватель "П".

Водяной экономайзер - это теплообменник, в котором вода подогревается низкотемпературными горячими газами (продуктами сгорания) перед ее подачей в барабан котла (сепаратор).

Генерация пара производится в ходовой части котла следующим образом. Питательная вода, предварительно нагретая в экономайзере до температуры кипения уходящими газами, поступает в барабан котла. Температура горячих газов в хвостовой части котла не должна опускаться ниже 120 °С *.

В режиме генерации пара вода циркулирует через испаритель. В испарителе идет интенсивное поглощение тепла, за счет которого и происходит парообразование. Процесс парообразования в испарителе происходит при температуре кипения питательной воды, соответствующей определенному давлению насыщения.

© 2024 lobnyaremont.ru - МастерСтрой