Бурение горизонтальных скважин и боковых горизонтальных стволов. Как проводят горизонтальное бурение нефтяных скважин? Горизонтальные скважины использование

Бурение горизонтальных скважин и боковых горизонтальных стволов. Как проводят горизонтальное бурение нефтяных скважин? Горизонтальные скважины использование

10.07.2023

Horizontal wells: from bold experiment to traditional technology

Горизонтальное бурение набирает обороты. Все больше скважин бурится с горизонтальным окончанием, либо из вертикальных скважин режутся боковые стволы. Наклонно-направленные скважины используют при разработке морских месторождений с платформ или с берега, в регионах со сложными геологическими условиями, требующими протяженных по длине стволов горизонтальных скважин. Такие скважины имеют сложную пространственную архитектуру, что определяет необходимость применения инновационных технологий, оборудования и квалифицированных кадров. И хотя это требует больших финансовых, материальных расходов, в конечном итоге – значительно увеличивает площадь дренирования продуктивного пласта, что увеличивает дебиты, а значит, прибыли компаний. «Круглый стол» редакции, проведенный методом экспресс-опроса, посвящен этой актуальной проблематике.

The horizontal drilling are gaining momentum. More wells drilled with horizontal bottom or from vertical wells cut sidetracks. Directional inclined wells used in the development of offshore fields or platforms with the shore, in regions with complex geological conditions, requiring extended along the length of the trunks horizontal wells. These wells have a complex spatial architecture that determines the necessity of application of innovative technologies, equipment and qualified personnel. And although it requires considerable financial, material costs, and, ultimately, significantly increases the drainage area of the reservoir, which increases flow rates and, therefore, the profits of companies. «Round table» revision carried out by the method of an opinion poll devoted to this actual issue.

Если в 70 – 80-е годы горизонтальные скважины были редким эпизодом, смелым экспериментом, демонстрацией возможностей техники и технологий, то сейчас это – производственная необходимость и обычная практика бурения скважин. Об этом свидетель­ствует статистика. Так, по итогам первого квартала 2017 г. видно, что большинство нефтяных компаний все больше внимания уделяет горизонтальному бурению, объемы которого занимают более трети от общего метража проходки. Например, в компании ЛУКОЙЛ в общем объеме бурения горизонтальные скважины составляют 35 %, «Роснефти» – 36,9 %, «Газпром неф­ти» – 71 %, «Башнефти» – 76 %, компании «Ру­сс­Нефть» – 89,7 % от общего объема проходки!

КУЛЬЧИЦКИЙ Валерий Владимирович,

РГУ нефти и газа (НИУ) имени И.М. Губкина

Доктор технических наук, профессор. Исполнительный директор центрального правления Научно-технического общества нефтяников и газовиков имени академика И.М. Губкина, заместитель заведующего кафедрой бурения нефтяных и газовых скважин, директор НИИБТ РГУ нефти и газа им. И.М. Губкина.
Авторитетный в России специалист в сфере геонавигации и интеллектуальных скважинных систем. Эксперт по промышленной безопасности в нефтяной и газовой промышленности Федеральной службы по экологическому, технологическому и атомному надзору, член Европейской ассоциации геофизиков и инженеров ЕАГО. Награжден медалью «Автору научного открытия» им. П.Л. Капицы (2003) за развитие теоретических основ создания интеллектуальных скважин.

Назрела потребность обсудить со специалистами актуальные проблемы строительства наклонно-направленных, горизонтальных и многоствольных скважин.
Представляем мнение профессионалов по этой весьма актуальной теме.
В успешной проводке горизонтальных скважин немало слагаемых, пренебрежение любым из которых может осложнить или погубить процесс. Но все-таки самое главное в этой технологии – системы геонавигации, каротажа и телеметрии. И поэтому мы начали наш опрос именно с вопроса о качестве применяемого оборудования.

В.В. КУЛЬЧИЦКИЙ:

«Разработка первых отечественных бескабельных забойных телеметрических систем: ЗИС-4 как аналога MWD–системы и «Забой» как аналога LWD–системы (разработчик ВНИИГИС, г. Октябрьский) финансировалась Министерством геологии, но так и не были востребованы ни геологами, ни нефтяниками-буровиками. После неудачных государственных испытаний ЗИС-4 в 1984 г. на Самотлорском месторождении в буровой бригаде Героя Социалистического Труда Анатолия Дмитриевича Шакшина нефтяники отказались от «электронного надзирателя» наклонно-направленных скважин, субъективно управляемых «кончиком карандаша».

– Как качество оборудования сказывается на результатах горизонтального бурения?
В.В. КУЛЬЧИЦКИЙ, РГУ нефти и газа (НИУ) имени И.М. Губкина. Как федеральному эксперту Минобрнауки мне довольно часто приходится расследовать инциденты, произошедшие при геонавигации скважин сложной пространственной архитектуры. Могу заключить, что до сих пор «торчат уши» недофинансирования отечественного геонавигационного оборудования, особенно на стадии доводки до промышленных образцов и внедрения в 80 – 90 гг. прошлого столетия. Большая доля непроизводительного времени и аварий приходится именно на отечественные телесистемы.

Разработка первых отечественных бескабельных забойных телеметрических систем: ЗИС-4 как аналога MWD-системы и «Забой» как аналога LWD-системы (разработчик – ВНИИГИС, г. Октябрьский) финансировалась Министерством геологии, но так и не были востребованы ни геологами, ни нефтяниками-буровиками. После неудачных государственных испытаний ЗИС-4 в 1984 г. на Самотлорском месторождении в буровой бригаде Героя Социалистического Труда Анатолия Дмитриевича Шакшина нефтяники отказались от «электронного надзирателя наклонно-направленных скважин, субъективно управляемых кончиком карандаша». Об этом написано в книге: Кульчицкий В. В. Геокосмос (М.: ИЦ РГУНГ, 2013 г. 146 с.).

С.В. КОЛБИН, OАО «Сургутнефтегаз». Качество оборудования является одним из ключевых вопросов при горизонтальном бурении боковых стволов. Отказ любого элемента КНБК приводит к дополнительным затратам. Мы уже не один год работаем совместно с производителями над повышением стойкости долот, увеличением межремонтного периода ВЗД и наработки на отказ телеметрических систем с целью достижения сбалансированной по времени работы «триады» (долото + ВЗД + телесистема), стремясь к тому, чтобы не было неплановых СПО из-за отказов. Практически все оборудование перед отправкой в бригады подвергается тестированию, опрессовкам, обкаткам.
И.А. ЛЯГОВ, компания ООО «Перфобур». Качество является совокупностью основных потребительских свойств любой технической продукции и определяется довольно обширной номенклатурой показателей из различных групп: назначением, надежностью, технологичностью, эргономичностью и т.д.

Поэтому качество оборудования, используемого для строительства горизонтальных скважин, непосредственно сказывается на результатах работы.
Например, в компании ООО «Перфобур» все узлы проходят испытания на стенде, на котором отрабатываются режимы бурения различными долотами и винтовыми забойными двигателями, подбираются фрезы под обсадные колонны различной категории прочности, а также проводится запись траектории пробуренных в песчано-бетонных блоках каналов.

КОЛБИН Сергей Викторович,

ОАО «Сургутнефтегаз»

Сергей Викторович работает начальником Управления по капитальному ремонту скважин и повышению нефтеотдачи пластов открытого акционерного общества «Сургутнеф­тегаз».

М.В. РАКИТИН, компания ООО «ЛУКОЙЛ – Нижневолжскнефть». Вопросы, с учетом специфики нашей компании, я бы, наверное, немного подкорректировал. Ведь мы работаем на морских месторождениях, а бурение горизонтальных скважин на море принципиально отличается от бурения боковых стволов на суше. Поэтому логично добавить вопрос: «Почему бурение на море принципиально отличается от бурения на суше?»
Отвечу: основные причины этого:

С.В. КОЛБИН:

«Качество оборудования является одним из ключевых вопросов при горизонтальном бурении боковых стволов. Отказ любого элемента КНБК приводит к дополнительным затратам».

– повышенные требования к безопасности бурения, эксплуатации и ликвидации скважин на море;
– очень высокие финансовые затраты требуют максимального сокращения времени строительства, что невозможно без использования надежного и высокотехнологичного оборудования мирового уровня;

– на суше разведочных (вертикальных) скважин довольно много, поэтому геологическая и эксплуатационная модель весьма надежная. На море разведочных скважин мало, поэтому при строительстве эксплуатационных скважин дополнительно решается задача доразведки горизонтальными скважинами месторождения.
Мы ведем бурение на Севере Каспия, поэтому ответы на другие вопросы будут связаны с бурением на море.
Геонавигация на наших месторождениях осуществляется удаленно небольшим коллективом, в который входят: геонавигатор, интерпретатор ГИС (петрофизик), геомеханик и супервайзерская служба Закзазчика. Для геонавигации используются сейсмические данные, данные ГТИ и ГИС-бурения (MWD&LWD), по­ступающие в реальном времени при бурении.

А.В. МИХАЙЛОВ:

«Именно благодаря геомеханическому моделированию можно подобрать оптимальную плотность и рецептуру бурового раствора. Также с помощью специалистов Центра технических решений ННБ, совместно с инженерами растворного сервиса, подготавливаются все необходимые гидравлические расчеты с учетом КНБК и бурильного инструмента – для понимания ожидаемой эквивалентной циркуляционной плотности (ЭЦП), эффекта свабирования и поршневания, рассматриваются все риски как во время бурения, так и во время спуско-подъемных операций».

Оборудование ГИС-бурения (MWD&LWD) при бурении на море играет очень важную роль. Кроме получения стандартной информации для определения литологии, пористости и характера насыщения надеемся на дополнительные данные, поэтому на море все шире начинаем использовать специальные методы ГИС-бурения (MWD&LWD): ГДК с отбором проб, ЯМК.
А.В. МИХАЙЛОВ, компания Халлибуртон. Бурение скважин, в частности горизонтальных, всегда связано с большими перегрузками и вибрационным воздействием вследствие несовершенства качества ствола, больших пространственных интенсивностей, разниц диаметров внутрискважинного оборудования и бурильного инструмента. Нужно также учитывать факт влияния бурового раствора, больших давлений и температуры. Безусловно, к качеству оборудования ННБ и каротажа во время бурения (LWD) всегда предъявлялись высокие требования. Так как любой отказ данного оборудования всегда влечет за собой незапланированные смены КНБК и спуско-подъемные операции, что в целом влияет на срок строительства скважин, тем самым увеличивая затраты компаний-операторов.
Любое оборудование ННБ должно пройти определенный цикл проверок и тестов на стадии разработки. Оно подвергается всем возможным механическим тестам, таким, как проверка на изгиб, кручение; проходит испытания на вибрационном и гидравлическом стенде. После чего уже имеет право проходить полевые испытания. Только после полевых испытаний оборудование получает сертификат или паспорт, подтверждающие работо­способность в сложных горно-геологических условиях.

– Геонавигационные системы каких производителей вы используете? Чем они привлекают вас: ценой, простотой в эксплуатации и обслуживании, надежностью, рабочим ресурсом?
В.В. КУЛЬЧИЦКИЙ. Эра освоения Западной Сибири высокотехнологичной отечественной геонавигацией нефтяных скважин сложной пространственной архитектуры началась 15 июля 1990 г., когда на Самотлорском месторождении пробурили за 30 суток и ввели в эксплуатацию скважину с длиной горизонтального ствола 209 м в коридоре пласта AB1+2 («рябчик») трудноизвлекаемой нефти. Дебит в 2 – 7 раз превысил соседние скважины с вертикальным вскрытием пласта!!!
Немного теории для понимания сложности технологии.
Геонавигация – составная и определяющая часть геонавтики – является научным направлением, в рамках которого ставятся и решаются технологические, аппаратные и программные задачи управления траекторией ствола скважины во взаимосвязи с исследованием околоскважинного пространства и воздействием на него в процессе бурения. Об этом написано в книге: Кульчицкий В.В. Геонавигационные технологии проводки наклонно-направленных и горизонтальных скважин (М.: ВНИИОЭНГ, 2000. 351 с.).
Геонавигация – высокотехнологичный сегмент разработки «сланцевой» нефти. Для разработки нефтяных залежей стволами значительной протяженности и площади охвата нефтяного пласта требуются надежные интеллектуальные и кибернетизированные КНБК с ресурсом работы до 1000 часов, обеспечивая одним рейсом долота до 10000 м. К разработке многофункцио­нального интеллектуального забойного оборудования на основе бурильного инструмента со встроенным силовым кабелем и вентильного электробура приступило ООО «НОВОБУР» (г. Пермь), что революционизирует технику и технологию бурения горизонтальных и многозабойных скважин – основу бурно развивающейся геонавигации.

ЛЯГОВ Илья Александрович,

ООО «Перфобур»

Кандидат технических наук по специальности «Технология бурения и освоения скважин».
Закончил аспирантуру в «Национальном минерально-сырьевом университете «Горный» (г. Санкт-Петербург).
Выпускник кафедры Нефтегазопромыслового оборудования Уфимского государственного нефтяного Технического университета. Проходил обучение во Фрайбергской горной академии (Германия).
Специалист в области закачивания скважин, вторичного вскрытия ПЗП. В настоящее время занимает должность главного инженера в компании ООО «Перфобур», занимающейся разработкой новой технологии радиального бурения.

Сланцевая нефть – нефть, которая добывается из сланцевых залежей, образованных из растительных и животных остатков, находящихся в твердом или в жидком состоянии в низкопроницаемых породах (Tight Oil).
Нефтематеринские породы – непроницаемые в реальном времени осадочные породы, способные в определенных геологических условиях и времени (миллионы лет) выделять свободные углеводороды, образованные в процессе диа- и катагенетических преобразований заключенного в них рассеянного органического веще­ства, когда общепринятые технологии дают коэффициент извлечения нефти (КИН) – от 0 до 1 – 3 %.
Каждой сланцевой формации соответствует определенная зрелость органического вещества (ОВ) – (определенные термобарические условия, пребывание в определенной стадии мезокатагенеза  – «окне нефтегазогенерации»). Необходимо создать в горном пространстве условия, при которых из керогена нефтематеринской породы генерируются подвижные углеводороды. Выявление закономерностей осадконакопления отложений баженовской свиты (БВ) определяет стратегию геонавигации скважин и пространственную архитектуру многозабойных наклонно-направленных и горизонтальных стволов. Зависимость фильтрационно-емкостных свойств горных пород от текстурно-структурных особенностей, сложившихся в процессе осадконакоплений, и постседиментационных преобразований исходных горных пород определяет тактику геонавигации многозабойных скважин.

Пример геореактора показывает тренд развития геонавигации в мире в целом и в России в частности. Это высокотехнологичное инновационное освоение подземного пространства (геокосмоса) стволами скважин значительной протяженности и площади охвата. Протяженность ствола скважины, а не глубина стала параметром мировых рекордов при освоении недр! Недра – то есть геокосмос наряду с подводным, воздушным и безвоздушным является четвертым видом пространства – подземным, в котором все активнее осуществляется деятельность человека, что, несомненно, приводит к изменению структур производства и потребления. Значительное сопротивление горных пород передвижению машин и механизмов, наличие больших давлений и температур предъявляют специфические требования к техническим средствам и технологиям, способным обеспечить активную деятельность человека в подземном пространстве.
С.В. КОЛБИН. Мы работаем с телеметрическими системами различных типоразмеров с гидравлическим, кабельным и электромагнитным каналами связи, а также с комбинацией двух последних, в зависимости от решаемых задач, например: какая промывочная жидкость применяется, биополимерный раствор, или, если работы производятся на депрессии, аэрированная азотом нефть. Комбинированный канал передачи данных уникален, разработан производителем по нашему техническому заданию.
И.А. ЛЯГОВ. В своей Технической Системе (ТС) «Перфобур» мы планируем использовать автономную (а в перспективе – оборудованную on-line каналом связи) телесистему отечественного производства, выпускаемую компанией АО «СКБ «ПН».

РЕДАКЦИЯ:

«В связи с тем, что общий фонд скважин в России вступает в период падающей добычи, необходимость будет подталкивать к масштабной разработке баженовской свиты, территория которой распространяется в Западной Сибири на площади около 1 млн км 2 с огромными запасами – до 140 млрд тонн нефти».

Сегодня ведется запись траектории каналов, пробуренных на нашем оборудовании с использованием ТС «Перфобур». Это позволяет многократно входить в уже пробуренный канал для исследований, интенсификации и в дальнейшем – для его капитального ремонта.
АО «СКБ «ПН» (г. Санкт-Петербург) заинтересовал нас тем, что специалисты данного поставщика первыми откликнулись на предложение по разработке малогабаритного автономного феррозондового инклинометра (диаметром 36 мм и длиной менее метра – в герметичном корпусе), способного работать в каналах с радиусом кривизны менее 7 метров.
М.В. РАКИТИН. В нашей практике бурения на море используется оборудование ГИС-бурения (MWD&LWD) компании Schlumberger.
А.В. МИХАЙЛОВ. Сперри Дриллинг Сервисез как департамент наклонно-направленного бурения сервисной компании Халлибуртон имеет геонавигционные системы собственного производства. В частности мы обладаем высокотехнологичным прибором ADR – азимутальным датчиком глубокого измерения удельного сопротивления. Он является прекрасным решением для оптимизации проводки траектории ствола скважины, максимального повышения добычи и продления срока эксплуатации скважины.
Прибор ADR сочетает в себе датчик направленного бурения глубокого проникновения с традиционным мультичастотным компенсированным датчиком удельного сопротивления. Глубокие измерения (до 6 метров), имиджи с высоким разрешением позволяют получать ранние предупреждения от приближения к границам пласта до выхода из продуктивной зоны, позволяя сохранять положение скважины в наиболее продуктивной части пласта.
Как и все приборы компании Халлибуртон, ADR имеет большую надежность и специальный дизайн, разработанный для бурения горизонтальных скважин различной сложности.

– Какие компоновки низа бурильной колонны при строительстве горизонтальных скважин, зарезке боковых стволов вы применяете?
С.В. КОЛБИН. Кроме упомянутых выше телесистем при проводке боковых стволов применяем ВЗД (в габаритах от 73 до 127 мм) и долота диаметром от 85 до 142,9 мм, как отечественных, так и зарубежных производителей. Использование РУС широкого распространения не получило, поскольку боковые стволы проводятся, в основном, на разбуренных, «старых» месторождениях.

И.А. ЛЯГОВ:

«В настоящее время в России существуют технологии для строительства многоствольных скважин, способные конкурировать с компаниями «Большой четверки».

И.А. ЛЯГОВ. В составе компоновки низа бурильной колонны ТС «Перфобур» мы используем специальные малогабаритные винтовые забойные двигатели с одним или двумя углами перекоса, устройство регулирования осевой нагрузки, способное работать как в режиме демпфера, так и асциллятора, долота типа PDC малого диаметра (58 – 60 мм), а также центраторы, места установки и диаметры которых подбираются в зависимости от требуемых параметров траектории каналов. В компоновку может быть включен автономный инклинометр.
М.В. РАКИТИН. Используются ВЗД, долота и РУС компании Schlumberger. Модули аппаратуры ГИС-бурения (MWD&LWD) входят в компоновку (КНБК) и используются на всех этапах строительства эксплуатационной скважины.

А.В. МИХАЙЛОВ. Специалистами Центра технических решений наклонно-направленного бурения (Solution Engineering) нашей компании КНБК проектируется и подбирается индивидуально для каждой горизонтальной скважины. Это делается для того, чтобы максимально удешевить стоимость компоновки, но при этом полностью решить поставленные Заказчиком задачи. Во время проектирования дизайна КНБК учитываются такие основные аспекты, как максимальная пространственная интенсивность скважины, ее отход от устья, протяженность горизонтального участка, возможная извилистость и кавернозность. На первой стадии производятся расчеты механических нагрузок на КНБК и бурильный инструмент – для понимания возможности образования искривления в колонне, что дает понимание о возможности наклонно-направленного бурения. На основании такого анализа делается вывод о целесообразности использования РУС в КНБК.

РАКИТИН Михаил Владиславович,

ООО «ЛУКОЙЛ-Нижневолжскнефть»

Михаил Владиславович более 35 лет работает в каротаже. Выпускник Московского государственного университета им. М.В. Ломоносова. Имеет опыт работы полевым инженером на российском и зарубежном оборудовании. Обрабатывал и интерпретировал данные ГИС, ПГИ и ГДИ на территориях Каспийской впадины, Западной Сибири и Тимано-Печорской газонефтяной провинции. В 2006 г. защитил кандидатскую диссертацию Усовершенствование интерпретации данных импульсного нейтронного каротажа с аппаратурой PDK-100 в условиях терригенного разреза Западной Сибири».
С 2010 г. и по настоящее работает ведущим геофизиком отдела мониторинга разработки нефтяных и газовых месторождений и повышения нефтеотдачи пластов. Участвует в планировании, мониторинге и оценке достоверности данных ГТИ, ГИС-кабель, ГИС-бурения (MWD&LWD) строящихся эксплуатационных и разведочных скважин. Кроме этого работает с материалами ПГИ горизонтальных скважин, оптоволоконных систем и трассерных исследований.

Отдельно ставятся задачи по геофизическим и петрофизическим измерениям во время бурения. В данный момент минимальный набор LWD-приборов включает в себя гамма-каротаж и каротаж УЭС, которые в большинстве случаях позволяют решать задачи геонавигации и получать минимальный набор геофизичесих данных.
Большинство компаний-операторов стараются заменить ГИС на кабеле оборудованием LWD, которое не уступает по качеству данных и в некоторых случаях показывает более реальную картину. Поэтому сейчас распространены такие методы, как акустический каротаж, гамма-гамма плотностной и нейтронный каротажи, боковой каротаж.

– Системы MWD/LWD требуют высокой квалификации пользователей. Где и как учатся, проходят тренинги буровики, способные с ювелирной точностью проводить стволы в определенную геологами точку или провести протяженный ствол по продуктивному пласту, особенно если он маломощный?
С.В. КОЛБИН. Обучение инженеров, ремонтирующих и эксплуатирующих телесистемы, на начальном этапе проводилось в учебных центрах производителей оборудования. Сейчас, в основном, обучение проводится на рабочих местах, в телеметрических партиях и лаборатории по ремонту телесистем силами ведущих специалистов инженерно-телеметрической службы. Квалификацию наших специалистов можно оценить как очень высокую.

М.В. РАКИТИН:

«На море, к сожалению, мы существенно отстаем. Наиболее слабо в области ГИС-бурения (MWD&LWD) мирового уровня закрыты секции, которые бурятся долотами 311 мм и более. Кроме ГК, ЭК и инклинометрии здесь практически ничего нет. Поэтому большинство работает с ГИС-кабелем. Здесь именно Россия может сделать прорыв, так как требуются нестандратные подходы».

И.А. ЛЯГОВ. Специалисты компании ООО «Перфобур» используют методики ВНИИБТ, УГНТУ, БашНИПИнефть, ТатНИПИнефть для получения аналитических зависимостей, устанавливающих закономерности геометрических параметров малогабаритных компоновок Технической Системы «Перфобур» с кривизной канала, на основании которой строятся профили каналов с различными радиусами кривизны для бурения сети разветвленных каналов в маломощных пластах.
М.В. РАКИТИН. Системы ГИС-бурения (MWD&LWD) для решения задач геонавигации требуют высокой квалификации пользователей. С аппаратурой ГИС-бурения (MWD&LWD) для получения всей необходимой информации работают специалисты компании Schlumberger. Контроль входной информации и геонавигация с изменением траектории в реальном времени осуществляется под руководством специалистов Заказчика. Насколько мне известно, специалистов-геонавигаторов у нас пока не готовят.

А.В. МИХАЙЛОВ. В нашей компании существует большое количество курсов для повышения квалификации, как с инструкторами в учебных центрах США и России, так и онлайн, которые можно пройти в свободное время из любой точки мира, имея только Интернет. Данные курсы являются обязательным требованием для развития персонала в компании. Еще один эффективный способ повысить квалификацию – обмен опытом на проектах других локаций компании. Это позволяет увидеть новые грани и особенности работы сервисных компаний на других континентах, с разным менталитетом и подходом к  работе. Такой опыт позволяет привнести что-то новаторское на российских проектах.
Халлибуртон уделяет большое внимание обучению и повышению квалификации своих сотрудников, так как понимает, что любая ошибка и непрофессионализм могут вылиться для Заказчика в непроизводительное время (НПВ), отказ оборудования ННБ или MWD/LWD, недостижение геологических целей Заказчика.

В связи с тем, что общий фонд скважин в России вступает в период падающей добычи, необходимость будет подталкивать к масштабной разработке баженовской свиты, территория которой распространяется в Западной Сибири на площади около 1 млн км 2 с огромными запасами – до 140 млрд тонн нефти. Поскольку баженовская свита отличается низкой проницаемостью коллекторов, то и разбуривать ее необходимо горизонтальными скважинами с последующим гидроразрывом пластов (опыт США, Канады и других стран).

С.В. КОЛБИН:

«Целесообразность бурения горизонтальных боковых стволов определяется как ожидаемым приростом дебитов скважин, возможностью увеличения КИН пласта и месторождения, так и окупаемостью вложений. На месторождениях Восточной Сибири, в условиях низких пластовых давлений, при бурении на депрессии с использованием в качестве промывочной жидкости аэрированной азотом нефти, мы проводим из каждой скважины по два горизонтальных участка длиной по 500 метров, что позволило значительно увеличить дебиты».

– Готовы ли мы, на ваш взгляд, технически и технологически к освоению этих природных богатств, особенно в условиях санкций?
В.В. КУЛЬЧИЦКИЙ. Керогенносодержащая порода баженовской свиты является неколлектором, ее основу слагают силициты, перемеживающиеся с пропластками глин. Напряженное состояние массива пород подтверждается выпучиванием и растрескиванием кернового материала. Следовательно, техногенным воздействием возможно освобождать энергию горной породы и запускать механизм трещинообразования в околоскважинном пространстве направленной разгрузкой пласта (НРП) в сочетании с ГРП в горизонтальных скважинах с большой площадью охвата искусственно созданной в породе разветвленной си­стемой трещин, которая и будет выполнять функции коллектора в БС. Структура предмета воздействия как единичного микропространства – сложная и методы воздействия на него должны быть многообразными, в т. ч. и с геонавигационными технологиями, обеспечивающими охват залежи боковыми стволами сообразно законам ее формирования. При многообразии вторичных методов воздействия (термические, химические, физические) главным является максимальное приближение и позиционирование траектории ствола скважины с учетом структурно-текстурных характеристик отложений БС.
Эффективное извлечение нефти в промышленном масштабе из нефтематеринских горных пород БС, обладающх большими геологическими запасами, представляется невозможным без применения геонавигационных технологий строительства скважин сложной пространственной архитектуры в сочетании с термическими методами.
Идея разработки технологий, ускоряющих процессы выделения ОВ в нефть, заключается в создании соответствующих термодинамических условий посредством скважинного сооружения сложной пространственной архитектуры – подземного реактора.
Авторским коллективом (Кульчицкий В.В., Щебетов А.В., Гутман И.C., Фомкин А.В., Боксерман А.А., Саакян М.И.) создан способ разработки многопластовой неоднородной залежи баженовской свиты с целью повышения нефтеотдачи залежи за счет ввода в разработку пропластков-неколлекторов нефтематеринской толщи БС [Способ разработки многопластового неоднородного нефтяного месторождения. Патент на изобретение RU № 2567918 от 02.12.2014]. На примере запатентованной скважины-геореактора показано, что эффективное извлечение нефти в промышленных масштабах из нефтематеринских отложений БС организацией на большой площади охвата процесса пиролиза без геонавигационных технологий строительства скважин сложной пространственной архитектуры представляется невозможным. Геореактор – природно-техногенное сооружение для термического освобождения нефти из автохтонных углеводородов, генетически связанных с исходным органическим веществом и находящихся в запечатанных порах нефтематеринских горных пород, образованных при переходе части твердой органики в жидкую.

МИХАЙЛОВ Александр Владимирович,

компания Халлибуртон

Александр Михайлов является руководителем службы технических решений (Solution Engineering) подразделения по наклонно-направленному бурению Sperry Drilling компании Халлибуртон в России с 2015 г. В данную службу входят такие направления, как оптимизация ННБ, геонавигация, интерпретация данных LWD, сервис корректировки замеров.
Александр – выпускник Российского Геологоразведочного университета им. С. Орджоникидзе по специальности «Геофизические исследования скважин». Свою профессиональную карьеру в нефтегазовом сервисе начал как инженер-телеметрист в 2008 г., потом работал как инженер ННБ и ведущий специалист технической поддержки ННБ.


С.В. КОЛБИН. Баженовские отложения – перспективная ресурсная база ОАО «Сургутнефтегаз». Опыт проводки боковых стволов в бажене у нас есть. Другое дело, как и где бурить эти стволы, какой способ вызова притока применять. Тут необходима совместная работа с геологами, практическая апробация теоретических представлений.
И.А. ЛЯГОВ. В настоящее время в России существуют технологии для строительства многоствольных скважин, способные конкурировать с компаниями «Большой четверки».
А.В. МИХАЙЛОВ. Баженовская свита до сих пор полностью не исследована. Не существует определенных подходов и технологий для ее разработки. Это подтверждают большинство компаний-оперататоров. На данный момент запасы баженовской свиты нерентабельны в условиях существующих как российских, так и иностранных технологий. Нельзя провести полную аналогию между нетрадиционными запасами России и США либо Канады, поэтому не все технологии североамериканских компаний подходят под наши условия.

– Насколько импортозамещение обеспечивает потребности российского рынка в геонавигационном оборудовании, станциях каротажа, роторно-управляемых системах, системах верхнего привода и т.д.?
В.В. КУЛЬЧИЦКИЙ. Создание геонавигационных технологий, которые обеспечат Россию углеводородным сырьем на сотни лет, всегда экономически оправдано.
Проблема на пути развития геонавтики, как научно-промышленной основы геонавигации, связана с высокими технологиями, создаваемыми на основе фундаментальных исследований и открытий. Прерванная вековая связь академической науки с отраслевой нанесла непоправимый ущерб отраслевым институтам, которые всегда были мостом, соединяющим промышленность, академическую и вузовскую науку. В России полностью погибли десятки отраслевых нефтегазовых НИИ, а численность оставшихся сократилась многократно, раздробившись на тысячи малых предприятий. Утрачены экспериментальные заводы и установки, деградировали научно-лабораторные базы и КБ. Академические институты в попытке решения финансовых проблем растратили четверть века на бесперспективную интеграцию с нефтегазокорпорациями, минуя отраслевые институты. «Мосты» между академической наукой и промышленностью – государственные отраслевые институты – сожжены. Системная связь институтов РАН с нефтегазодобывающей отраслью заменена околонаучной деятельностью частных центров и НИИ неф­тегазовых корпораций, где административная власть управляет научными подразделениями. Без восстановления системы отраслевых институтов как проводников академической науки в нефтегазовую практику невозможно реализовать призыв В.В. Путина на Совете при Президенте РФ по науке и образованию 21.01.2016 г.: «…Наличие собственных передовых технологий – это ключевой фактор суверенитета и безопасности государства, конкурентоспособности отечественных компаний, важное условие роста экономики и повышения качества жизни наших граждан…» (цитата по еженедельной газете научного сообщества МГТУ им. Н.Э. Баумана «Поиск», № 18 – 19 от 13.05.2016).

И.А. ЛЯГОВ:

«Экономическая эффективность строительства скважины зависит от качества гидродинамической связи продуктивного пласта с пробуренной скважиной. Если рассматривать бурение на новом месторождении, то горизонтальный канал (конечно, оптимальной длины) позволяет построить скважину с более эффективной площадью фильтрации, а следовательно, и добыть больше нефти с меньшими эксплуатационными затратами, но с большими затратами на бурение, связанными с необходимостью использования дорогостоящего современного (инновационного) оборудования».

С.В. КОЛБИН. В основном, мы используем отечественные клинья-отклонители, фрезеры, долота, винтовые забойные двигатели, верхние силовые приводы, оборудование для заканчивания скважин.
И.А. ЛЯГОВ. В последние годы, в связи с потребно­стью импортозамещения, ряд ведущих российских компаний занимаются разработкой роторно-управляемых систем, современных инклинометрических телесистем радиального бурения. Одной из таких компаний является АО «СКБ «ПН», специалисты которой успешно справляются с потребностями рынка в качественном оборудовании.
М.В. РАКИТИН. На море, к сожалению, мы существенно отстаем. Наиболее слабо в области ГИС-бурения (MWD&LWD) мирового уровня закрыты секции, которые бурятся долотами 311 мм и более. Кроме ГК, ЭК и инклинометрии здесь практически ничего нет. Поэтому большинство работает с ГИС-кабелем. Здесь именно Россия может сделать прорыв, так как требуются нестандратные подходы. Более подробно по этому вопросу можно прочитать в статье С.Ю. Штуня, М.В. Ракитина – «Можно ли обогнать зарубежные компании в области ГИС-бурения (MWD&LWD)?» в вашем специализированном журнале «Бурение и нефть» в № 10 (октябрь) 2016 г.
А.В. МИХАЙЛОВ. Насколько мне известно, несколько российских компаний и бюро уже продолжительное время ведут разработки высокотехнологичного оборудования ННБ и MWD/LWD в рамках программы импортозамещения. Однако уровень такого оборудования пока уступает иностранным аналогам как в плане надежности, так и в плане функционала. Поэтому на данный момент однозначно можно сказать, что отечественное оборудование не может охватить все потребности нефтегазовых компаний.
– Горизонтальные скважины, как правило, более подвержены обвалам и осыпям породы, поэтому требуют тщательного подбора рецептуры буровых растворов. Какие буровые растворы используете вы?
С.В. КОЛБИН. Для предупреждения осложнений при бурении боковых стволов мы применяем высокоингибированный хлоркалиевый биополимерный раствор, подбираем рецептуры в зависимости от состояния пласта, непосредственно в бригадах КРС круглосуточно контролируем до 15 параметров БПР.
И.А. ЛЯГОВ. Реологические свойства и технологические параметры промывочной жидкости, безусловно, имеют важное значение в процессе разрушения горной породы, работы ВЗД, фрез и долот. Для обеспечения достаточной выносящей способности технология разветвленно-направленного (радиального) бурения «Перфобур» использует специальные растворы, например, безглинистый биополимерный ингибированный буровой раствор рецептуры ООО «Перфобур».
М.В. РАКИТИН. Для бурения длинных горизонтальных стволов используются растворы на нефтяной основе.
А.В. МИХАЙЛОВ. Очевидно, что для снижения вероятности возникновения вышеупомянутых проблем необходим более глубокий и широкий анализ на стадии планирования скважин. А для того чтобы достичь наилучших результатов, необходим мультидисциплинарный подход к решению сложных технических задач. Геомеханическое моделирование является неотъемлемой частью такого подхода. Сейчас именно благодаря геомеханическому моделированию можно подобрать оптимальную плотность и рецептуру бурового раствора. Также с помощью специалистов Центра технических решений ННБ, совместно с инженерами растворного сервиса, подготавливаются все необходимые гидравлические расчеты с учетом КНБК и бурильного инструмента – для понимания ожидаемой эквивалентной циркуляционной плотности (ЭЦП), эффекта свабирования и поршневания, рассматриваются все риски как во время бурения, так и во время спуско-подъемных операций. Имея возможность получать данные по внутреннему и затрубному давлению во время бурения в реальном времени с датчиков LWD, можно корректировать параметры раствора своевременно, избегая катастрофических последствий.

– Всегда ли экономически оправдано бурение горизонтальных скважин? Насколько они дороже вертикальных и есть ли ощутимая разница между дебитами горизонтальных и вертикальных скважин при высокой проницаемости пласта?
С.В. КОЛБИН. Целесообразность бурения горизонтальных боковых стволов определяется как ожидаемым приростом дебитов скважин, возможностью увеличения КИН пласта и месторождения, так и окупаемостью вложений. На месторождениях Восточной Сибири, в условиях низких пластовых давлений, при бурении на депрессии с использованием в качестве промывочной жидкости аэрированной азотом нефти, мы проводим из каждой скважины по два горизонтальных участка длиной по 500 метров, что позволило значительно увеличить дебиты. Более того, при бурении зачастую получаем притоки нефти.
И.А. ЛЯГОВ. Экономическая эффективность строительства скважины зависит от качества гидродинамической связи продуктивного пласта с пробуренной скважиной. Если рассматривать бурение на новом ме­сторождении, то горизонтальный канал (конечно, оптимальной длины) позволяет построить скважину с более эффективной площадью фильтрации, а следовательно, и добыть больше нефти с меньшими эксплуатационными затратами, но с большими затратами на бурение, связанными с необходимостью использования дорогостоящего современного (инновационного) оборудования.
А если рассматривать скважины, находящиеся на поздней стадии эксплуатации, то, на наш взгляд, наиболее оптимальным является строительство сети разветвленных каналов малого диаметра и радиуса кривизны, позволяющее эффективно вскрывать пласты малой мощности и преодолевать загрязненные призабойные зоны пласта (ПЗП), образовавшиеся при его первичном вскрытии.
М.В. РАКИТИН. На море для эксплуатации бурятся практически только горизонтальные скважины. Уже в конце прошлого века стали использовать подводное устьевое оборудование горизонтальных скважин.
ГИС-бурение (MWD&LWD) все шире начинает использоваться и в разведочных скважинах на море.
А.В. МИХАЙЛОВ. Данный вопрос не первый год интересует все нефтегазовые компании. Существует много научных работ, доказывающих, что горизонтальные скважины окупаются быстрее вертикальных и наклонно-направленных, при том что стоимость горизонтальной скважины на 15 – 20 % дороже. Горизонтальные скважины предоставляют гораздо большие возможно­сти воздействия различными методами на пласты, чем вертикальные или наклонно-направленные.
Сегодня бурение на нефть и газ происходит в недосягаемых зонах, где порой невозможна отсыпка куста непосредственно над объектом разработки либо требует больших финансовых затрат – для строительства дополнительных дорог, обеспечения транспортного сообщения. В подобных условиях бурением вертикальных скважин просто невозможно попасть в геологические цели. И тогда горизонтальное бурение – единственно возможный способ добраться до продуктивных пластов.

Бурение горизонтальных скважин очень успешно применяется как в добыче нефти и газа, так и в таком важном и актуальном вопросе, как строительство. Скважина – это горная выработка в форме цилиндра. Ее длина значительно превосходит ширину. Верхнюю часть принято называть устьем, а нижнюю – забоем. Стены – это ствол данной конструкции. Вскрытие пластов горизонтальными стволами позволяет сохранить чистой окружающую среду и нанести минимальный вред экологии.

Основные требования к конструкции горизонтальной скважины:

  • конструкция обязана не допустить разрушения стен;
  • она должна предоставить свободный доступ к забою;
  • она обязана обеспечить герметизацию устья.

Системы принято подразделять на 3 основных типа:

  • горизонтальный тип;
  • вертикальный;
  • наклонно-направленный;
  • многоствольный.

Что такое горизонтальная скважина: особенности

Схемы горизонтальных скважин с различными радиусами кривизны.

Горизонтальная скважина – это конструкция, угол отклонения которой в обычной ситуации составляет 90°. Но на практике все выглядит немного по-другому. Дело в том, что в природе не существует абсолютно идеальных прямых линий. Таким образом, необходимо пробурить стволы по траектории, которая наиболее приближена к оптимальной.

Получается, что горизонтальной скважиной принято называть ту, которая имеет наиболее протяженную зону. Она используется при освоении нефтяных и, конечно, газовых месторождений. Особенности таких устройств позволяют получать дебиты (объем нефти, поступающий в определенную единицу времени из искусственного источника), значительно превосходящие дебиты вертикальных сооружений. Дебит напрямую зависит от длины ствола. Бурение скважины обойдется гораздо дороже другого бурения, но оно же будет продуктивнее. Горизонтальная скважина, как правило, используется в качестве добывающей, но также может являться и нагнетательной. Имеет большую продуктивность и эффективность в месторождениях, которые содержат трещины с вертикальным уклоном.

Наибольшую производительность они приносят, когда применяются в коллекторах с трещинами, в коллекторах с газовой шапкой или водой (это снизит вероятность прорыва газа), в коллекторах с довольно низкой проницаемостью и, напротив, в коллекторах с высокой проницаемостью (там они успешно уменьшают скорость движения газа).

Разделение конструкции горизонтальной скважины на категории

Системы принято разделять на несколько категорий:

  1. Разведочные (бурятся для уточнения количества нефти и газа).
  2. Поисковые (бурятся, чтобы отыскать залежи нефти и газа)

Эксплуатационные скважины, в свою очередь, разделяются на подвиды:

  1. Скважины, именующиеся «добывающимися», естественно, используются для добычи залежей в почве нефти и газа.
  2. Скважины, воздействующие на пласты, нагнетая воду, газ и другие элементы. Иногда могут использоваться и эксплуатироваться в качестве добывающих.
  3. «Контрольные» скважины:
  • служат для измерения силы давления в газовой шапке и нефтяной зоне;
  • нужны для осуществления контроля изменений положения залежей;
  • резервные (вовлекают в работу застойные зоны);
  • специальные скважины (используются, чтобы добыть техническую воду);
  • оценочные скважины (нужно пробурить, для того чтобы уточнить параметры и продуктивные границы залежей);
  • бывают скважины для осуществления подмены аварийных и изношенных физически скважин.

Бурение скважин традиционным методом и методом горизонтального бурения.

Когда бурят скважину горизонтального направления, необходимое количество так называемых колонн, а также глуби установки «башмаков» определяется существующим количеством зон, которые несовместимы с условиями проводки ствола из-за неустойчивости пород и низкой прочности.

До того как осуществится приоткрытие продуктивных и производительных горизонтов, необходимо предусмотреть спуск одной колонны, чтобы исключить вероятность разрыва пород. Различие между диаметрами скважин и колонн подбирается, исходя из наилучших и правильных значений, определенных практикой бурений, которые обеспечат легкий, без каких-либо препятствий спуск колонны и качественное, прочное цементирование.

Произведя расчеты приблизительно ожидаемых внутренних и внешних давлений, производят выбор труб. Прочность колонн должна предоставить:

  • абсолютную герметизацию устья;
  • устойчивость и целостность столба;

Требования, предъявляемые к конструкции:

  1. Использовать всю энергию продуктивных горизонтов по максимуму.
  2. Применять только самое лучшее, эффективное и качественное оборудование.
  3. Создать условия, не допускающие аварийных ситуаций и осложнений.
  4. Получить геологическую и другую информацию о данном разрезе.
  5. Условия соблюдения необходимой охраны окружающей среды и экологии необходимо выполнять строжайше.

В строительстве методы бурения применяются для проведения коммуникаций с использованием специальных установок, которые с легкостью пробивают грунт абсолютно любой твердости. Горизонтальные скважины обладают огромным и несомненным преимуществом перед рядовыми, привычными методами проведения такого рода работ. Во-первых, такая конструкция не разрушает верхний слой почвы. Во-вторых, можно проложить скважину даже под водоемами.

Этапы работы:

  1. Подготавливаются вся необходимая техника и устройства.
  2. На анализ отдается проба грунта.
  3. Выполняется пилотная скважина, ее размер постепенно увеличивается.
  4. В образовавшуюся траншею закладываются трубы.
  5. Идет полная проверка всех коммуникаций.

Что такое пилотная скважина?

Схема бурения пилотной скважины.

Так именуемая пилотная скважина является обычным пробным проколом. Для выполнения этой задачи используют буровую головку небольшого размера. Эта головка соединена со специальной штангой. Ее движение дает возможность контролировать и вносить коррективы в прокладку траншеи. Штанга – это очень большая труба, даже одна ее секция способна достигать 2,5-3 м. Секции легко присоединяются друг к другу.

Буровые головки необходимо приобретать с хорошим алмазным напылением.

Самый сложный момент в процессе данной работы – пройти с максимальной точностью по намеченному маршруту. Поэтому все чаще используются и набирают популярность конструкции горизонтальной скважины. Применяя такой метод, гораздо проще добиться положительного результата.

А в чем суть такого метода? В буровую головку устройства встроен специальный передатчик, его сигналы поступают на приемное устройство оператора. Если вдруг техника сбивается с намеченного и запланированного пути, это немедленно отображается на внешнем дисплее. Таким образом, появляется прекрасная возможность устранить все ошибки и недочеты.

Способы расширения скважины

Для расширения скважины потребуется так называемый специальный расширитель. Его необходимо протянуть в обратном направлении. Приходя в движение, он будет срезать лишние слои грунта. Чтобы труба беспрепятственно и легко вошла в скважину, диаметр этой скважины обязательно должен превышать ширину трубы примерно на 40%.

Конструкция горизонтальной скважины завершается прокладкой труб. С самого конца скважины притягивается расширитель. К нему присоединяется захват для трубы. При помощи «умных», «контролирующих» средств и техники оборудования, а также операторов трубы тянутся в нужном направлении.

Какие трубы используют для создания такой конструкции?

Сравнение типов горизонтальных скважин.Радиусы кривизны зависят от типа горных пород и бурового раствора.

Конечно, чаще всего это именно полимерные трубы. Во-первых, они долговечны. Во-вторых, на протяжении очень долгих лет сохраняют свою химическую и физическую стабильность. Такая вода не содержит абсолютно никаких вредных веществ и примесей.

Металлические трубы применяются только в тех редких случаях, когда по трубам будут течь слишком горячая вода и крайне агрессивные химические элементы и составы.

Проводить такую работу самостоятельно категорически запрещено. Этот род деятельности выполняется только компетентными и квалифицированными инженерами, владеющими необходимым образованием и оборудованием.

Разновидности скважинных конструкций:

  • обустройство колодцев;
  • скважина на песок;
  • бесфильтровая скважина.

Бурение скважин для воды ручными способами

Список необходимых инструментов и материалов:

  • бурильная вышка, бур;
  • лебедка;
  • штанги;
  • обсадные трубы.

Последовательность работ:

  1. Если требуется не слишком глубокая скважина, можно вполне обойтись без бурильной вышки.
  2. Бурильные штанги выполняются из труб, которые соединяются с помощью резьбы. К нижней штанге крепится бур.
  3. Буровая вышка ставится на место бурения.
  4. Первые витки буром можно выполнить своими силами, но в дальнейшем процесс пойдет тяжелее и потребует привлечения дополнительной силы.
  5. Немного смягчить грунт может вода.
  6. Таким образом, бурение продолжается до тех пор, пока не покажется водоносный слой.
  7. Чтобы откачать грязную воду, понадобится насос.
  8. Водоносная жила тщательнейшим образом промывается, и появляется чистая, хорошая вода. Если по каким-то причинам этого не произошло, скважину потребуется углубить на 1-3 м.

Такими способами прокладываются горизонтальные скважины в добыче нефти и газа и в строительстве. Учитывая наличие необходимых знаний, опыта, навыков и отличной современной техники, данный процесс значительно упростился. Как можно заметить, процесс этот очень увлекателен и интересен.

Существуют два способа горизонтального бурения на нефть и газ. Первый (распространён в США) представляет собой прерывистый процесс проводки скважин с использованием роторного бурения (применяется с начала 20 века). При этом способе с забоя скважины долотом меньшего диаметра, чем диаметр ствола скважин, забуривается углубление под углом к оси скважины на длину бурильной трубы (рис. 2.6) с помощью съёмного или несъёмного клинового либо шарнирного устройства (рис. 2.7, рис. 2.8).

Рис. 2.6.

Рис. 2.7.

Рис. 2.8.

Полученное таким образом направление углубляется и расширяется. Дальнейшее бурение ведётся долотом нормального диаметра с сохранением направления с помощью компоновки низа бурильной колонны, оснащённой стабилизаторами.

Второй способ, предложенный P. A. Иоаннесяном, П. П. Шумиловым, Э. И. Тагиевым и M. T. Гусманом в начале 40-x гг. 20 в., основан на использовании турбобура либо др. забойного двигателя. Этот способ представляет собой непрерывный процесс набора искривления и углубления скважины долотом нормального диаметра. При этом способе для набора искривления используется такая компоновка низа бурильной колонны, при которой на долото в процессе бурения действует сила, перпендикулярная его оси (отклоняющая сила). B этом случае весь процесс наклонно-направленного бурения сводится к управлению отклоняющей силой в нужном азимуте. Создание отклоняющей силы может осуществляться различными путями. Если турбобур односекционный, то для получения необходимой отклоняющей силы достаточно иметь над турбобуром переводник с перекошенными резьбами, либо искривлённую бурильную трубу (рис. 2.9).

Рис. 2.9.

При пропуске турбобура в скважину изогнутая часть компоновки над турбобуром за счёт упругих деформаций стремится выпрямиться, а в сечении изгиба возникает момент силы. Отклоняющая сила в этом случае равняется моменту силы, разделённому на расстояние от сечения изгиба до долота. Интенсивность набора угла искривления при описанной выше компоновке будет невысокой, а предельный угол искривления - менее 30°. Для более интенсивного набора искривления сечение изгиба, где возникает момент упругих сил, переносят ближе к долоту. Для этой цели применяются специальные шпиндели и турбобуры. Так как при таких шпинделях резко увеличивается отклоняющая сила, то интенсивность набора угла искривления и предельная величина искривления существенно увеличиваются.

На интенсивность набора угла искривления влияет также частота вращения долота и скорость подачи бурильной колонны в процессе бурения. Чем выше частота вращения долота и чем меньше скорость подачи бурильной колонны, тем интенсивнее, под действием отклоняющей силы, происходит фрезерование стенки скважины и тем интенсивнее искривление. Наибольшая интенсивность искривления может быть получена при применении в нижней части турбобура эксцентричного ниппеля, который позволяет выводить ствол скважины в горизонтальное положение.

Прямолинейные наклонные участки ствола скважины бурятся с компоновками, оснащёнными стабилизаторами. Ориентирование отклоняющей силы в нужном азимуте может осуществляться визирным спуском бурильной колонны либо с помощью инклинометра при установке над турбобуром диамагнитной трубы и магнитным устройством, расположенным в плоскости действия отклоняющей силы. Указанные методы ориентирования отклоняющей силы должны учитывать угол закручивания бурильной колонны, возникающий из-за реактивного момента турбобура, что в некоторой степени отражается на точности ориентирования. B 80-x гг. распространяются системы телеконтроля, позволяющие в процессе бурения контролировать направление действия отклоняющей силы. За рубежом при наклонно-направленном бурении интервалы набора искривления и выправления кривизны осуществляются в основном турбобурами либо объёмными двигателями, прямолинейные интервалы ствола бурятся роторным способом.

Отклонители

Назначение отклоняющих устройств -- создание на долото отклоняющего усилия или наклона оси долота к оси скважины в целях искусственного искривления ствола скважины в заданном или произвольном направлении. Их включают в состав компоновок низа бурильных колонн. Они отличаются своими особенностями и конструктивным выполнением.

В турбинном бурении в качестве отклоняющих устройств применяют кривой переводник, турбинные отклонители типа ТО и ШО, отклонитель Р-1, отклонитель с накладкой, эксцентричный ниппель и др.; в электробурении -- в основном механизм искривления (МИ); в роторном бурении -- отклоняющие клинья, шарнирные отклонители и др. Рассмотрим некоторые отклонители.

Кривой переводник (рис. 2.10) -- это наиболее распространенный и простой в изготовлении и применении отклонитель при бурении горизонтальных скважин. Он представляет собой толстостенный патрубок с пересекающимися осями присоединительных резьб. Резьбу с перекосом 1...40 нарезают в основном на ниппеле, в отдельных случаях -- на муфте. Кривой переводник в сочетании с УБТ длиной 8... 24 м крепят непосредственно к забойному двигателю. Отклонитель Р-1 (рис. 2.11) выполняется в виде отрезка УБТ, оси присоединительных резьб которой перекошены в одной плоскости и в одном направлении относительно ее оси. Отклонитель Р-1 предназначен для набора зенитного угла до 90° и выше, изменения азимута скважины, зарезки нового ствола с цементного моста и из открытого ствола.

Рис. 2.10.

Отклонитель с накладкой -- это сочетание кривого переводника и турбобура, имеющего на корпусе накладку. Высота накладки выбирается такой, чтобы она не выдавалась за габаритные размеры долота. Отклонитель с накладкой при применении односекционных турбобуров обеспечивает получение больших углов наклона скважины. Его рекомендуется применять в тех случаях, когда непосредственно над кривым переводником необходимо установить трубы малой жесткости (немагнитные или обычные бурильные трубы).

Рис. 2.11.

Отклоняющее устройство для секционных турбобуров представляет переводник, соединяющий валы и корпуса верхней и нижней секции турбобура под углом 1,5...2,0°, причем валы соединяются с помощью муфты.

Турбинные отклонители (ТО) конструктивно выполняются посредством соединения нижнего узла с верхним узлом через кривой переводник, а валов -- через специальный шарнир. Серийно выпускаются турбинные отклонители (рис. 2.12) и шпиндели-отклонители (ШО).


Рис. 2.12. Турбинный отклонитель ТО-2: 1 -- турбинная секция; 2 -- шарнирное соединение; 3 -- шпиндельная секция

Турбинные отклонители имеют следующие преимущества:

· кривой переводник максимально приближен к долоту, что увеличивает эффективность работы отклонителя;

· значительно уменьшено влияние колебания осевой нагрузки на величину отклоняющей силы на долоте, что позволяет получить фактический радиус искривления, близкий к расчетному.

Недостаток турбинных отклонителей -- малая стойкость узла искривленного соединения валов нижнего и верхнего участков отклонителя.

Эксцентричный ниппель представляет собой отклонитель, выполненный в виде накладки, приваренной к ниппелю турбобура. Применяется этот отклонитель при бурении в устойчивых породах, где отсутствует опасность заклинивания или прихвата бурильной колонны.

Упругий отклонитель состоит из специальной накладки с резиновой рессорой. Накладка приваривается к ниппелю турбобура. Этот отклонитель применяют при бурении в породах, где эксцентричный ниппель не применим из-за опасности прихватов.

Механизм искривления -- это отклонитель для бурения наклонно-направленных скважин электробуром. В таких механизмах валы двигателя и шпинделя сопрягаются под некоторым углом, что достигается применением зубчатой муфты сцепления.

Многозабойное бурение

Многозабойное бурение - вид наклонно-направленного бурения, включающий проходку основного ствола с последующим забуриванием и проходкой в его нижней части дополнительных стволов, пересекающих геологическую структуру.

Многозабойное бурение применяется с целью повышения эффективности буровых работ при разведке и добыче полезных ископаемых, достигаемой за счёт увеличения доли полезной протяжённости стволов скважин.

Наиболее широко многозабойное бурение используется при разведке твёрдых полезных ископаемых. При разработке нефтяных месторождений. Многозабойное бурение принято называть разветвлённо-горизонтальным бурением. Впервые это бурение осуществлено в США (1930). Использование забойных двигателей при многозабойном бурении впервые реализовано в CCCP по предложению A.M. Григоряна, B. A. Брагина, K. A. Царевича в 1949.


Рис. 2.13. Способы вскрытия пласта: 1 -- обычная скважина; 2 -- многозабойная скважина; 3 -- продуктивный пласт нефти; 4 -- резервуар для нефти.

Многозабойное бурение целесообразно в сравнительно устойчивых продуктивных пластах мощностью 20 м и более, например в монолитных или с прослоями глин и сланцев нефтеносных песчаниках, известняках и доломитах, при глубинах 1500-2500 м при отсутствии газовой шапки и аномально высоких пластовых давлений. Многозабойное бурение сокращает число обычных скважин благодаря увеличению дренированной поверхности продуктивного пласта. Для проводки многозабойной скважины используется комплекс технических средств и контрольно-измерительной аппаратуры, обеспечивающих проводку стволов в заданном направлении.


Рис. 2.14. Многозабойно-горизонтальная скважина-гигант: 1 -- плавучая буровая установка; 2 -- трубы; 3 -- устье скважины; 4 -- основной ствол; 5 -- ответвления; 6 -- нефтеносный пласт.

Вскрытие нефтяных пластов многозабойными скважинами позволяет увеличить дебиты нефтяных скважин за счёт увеличения поверхности фильтрации, увеличить нефтеотдачу пласта, ввести в промышленную разработку малодебитные месторождения с низкой проницаемостью коллектора или высоковязкой нефтью, повысить приёмистость нагнетательных скважин и точность проводки противофонтанных скважин за счёт перебуривания только нижних её интервалов в случае непопадания первым стволом. B нефтедобывающих районах эксплуатируются скважины с 5-10 ответвляющимися стволами длиной по 150-300 м каждый. Благодаря этому приток нефти на первом этапе эксплуатации в несколько раз больше, чем из обычных скважин. B нашей стране с помощью многозабойного бурения успешно проведены десятки скважин на нефть, разрабатывается и испытывается многозабойное бурение глубоких горизонтальных скважин большой протяжённости (несколько км).

Владимир Хомутко

Время на чтение: 5 минут

А А

Как проводят горизонтальное бурение нефтяных скважин?

Горизонтальное бурение нефтяных скважин в процессе добычи полезных ископаемых является весьма значимой технологией, поскольку её применение дает возможность получить доступ к трудноизвлекаемым запасам углеводородов и разрабатывать сложные участки горных пород.

Создаваемая с помощью такого способа бурения горизонтальная горная выработка с определенным углом отклонения от вертикальной оси ствола позволяет добывать такой ценный энергоресурс, как нефть, наиболее быстро и эффективно.

Перед началом бурения обязательно следует подготовительный этап, процессе которого производятся следующие виды работ:

  • исследование грунтов и горных пород в месте предполагаемого бурения (чтобы обеспечить оптимальное их разбуривание);
  • получение необходимых разрешительных документов, которые юридически подтверждают законность добычи этого полезного ископаемого в конкретном месте.

Горизонтальные нефтяные скважины. Способы их бурения

Наклонные скважины вообще и горизонтальные в частности бурят с применением различных технологий, основными из которых в настоящее время считаются:

  • направленное бурение;
  • инсталляционное сервисное бурение;
  • направленный внутриразломный буровой процесс.

Применение второй методики, как правило, предусматривает совместную прокладку подземных коммуникаций, а третья технология чаще применяется при разработке угольных пластов, поскольку в процессе такой работы зачастую возникает необходимость обеспечить газоотведение.

Вследствие падения дебитов давно эксплуатируемых скважин, многие нефтедобывающие компании стараются увеличить объем нефтедобычи с помощью более интенсивной разработки залежей, обнаружение и разведка которых уже закончены. Горизонтальное бурение нефтяных скважин как раз относится к методикам, позволяющим эффективно проводить такую интенсификацию.

Суть такого технологического процесса – расширение площади введения добываемого продукта в ствол скважины. С помощью горизонтального бурения формируются скважины, имеющие горизонтальные отрезки, которые возможно продолжать методами наклонно-направленного бурения.

Бурение скважин горизонтального типа имеет свои особенности, уравновешивающие воздействие таких технологий на экологическое состояние окружающей среды.

Одним из широко используемых технологических способов является бестраншейное строительство.

Применение этого метода дает возможность проводить работы вблизи высоковольтных линий электропередач, в застроенных жилыми домами массивах и в окрестностях дорог разного назначения.

С целью снижения в процессе бурения временных затрат, бурение горизонтально направленных скважин целесообразно применение комплексного оборудование, так как это позволяет сократить количество рабочего персонала и численность единиц используемой техники. Помимо этого, применение такого оборудование не требует произведения работ для снижения уровня грунтовых вод с высоким залеганием к поверхности.

Немаловажное значение имеет и финансовая составляющая, поскольку сокращение времени рабочего процесса приводит к уменьшению сметной стоимости объекта, вследствие чего можно утверждать, что использование высокотехнологичного оборудование позволяет минимизировать материальные затраты.

Если рассматривать такое бурение в экологическом и общественном аспекте, то такого рода разработка месторождений полезных ископаемых сводит к минимуму ущерб проживающему поблизости населению и минимизирует дискомфорт, вызываемый любыми строительными работами, а также максимально обеспечивает защиту окружающей экологической среды.

Практическое применение горизонтального бурения

Применение подобной технологии не только позволяет увеличить объемы добываемого нефтяного сырья с месторождений, эксплуатация которых уже ведется в течение долгого времени. Эта методика также дает возможность успешно и эффективно разрабатывать те участки, на которых использование обычных скважин нерентабельно из-за низкой продуктивности.

Применение горизонтального способа бурения нефтяных скважин эффективно в следующих случаях:

Поломки буровых устройств чаще всего возникают в особо твердых пластах горных пород, встречающихся на пути проходки скважины. Кроме того, бур может заклинить в ходе проходки, и в этом случае извлечение его из горной породы зачастую не представляется возможным. Для продолжения разработки и для одновременного обхода слишком прочного участка и применяется горизонтальное бурение, которое может идти как под определенным углом, так и параллельно.

В некоторых случаях традиционные способы бурения заменяют горизонтальными технологиями из-за сложности рельефа или близкого местоположения водоема. Помимо этого, такие технологии позволяют гораздо быстрее и значительно легче добираться до нужного продуктивного слоя и выбирать наиболее оптимальное и удобное место извлечения нефтяного сырья.

Если месторождение расположено на дне океана или моря, стандартная технология становится весьма затратной, поскольку требует установки плавучей буровой платформы, в то время, как затраты на горизонтальное бурение в таких случаях гораздо ниже. С помощью горизонтально-направленного бурения есть возможность обустраивать подземные нефтехранилища.

Горизонтальное бурение на нефтедобывающих промыслах подразумевает применение инновационных технологий, позволяющих добиваться большого угла отклонения ствола скважины от вертикальной оси (до 90 градусов).

Горизонтальное бурение скважин

Поскольку нефтеносные слои, как правило, обладают горизонтальной структурой, горизонтальные скважины (по сравнению с обычными) гораздо продуктивнее при разработке одного и того же месторождения, поскольку площадь забоя горизонтального участка больше, чем вертикального.

Проходка таких скважин производится в нужных слоях и на заранее определенных режимах. Все работы выполняются в строгом соответствии с требованиями к условиям эксплуатации буровой установки, разрушающей пласты горных пород.

Эффективность бурового процесса оцениваются по следующим параметрам:

  • уровень нагрузки, приходящейся на долото, который напрямую зависит от осевого давления;
  • число оборотов бурового инструмента;
  • качественные характеристики глинистого материала в каждом пробуриваемом слое;
  • способ эксплуатации устройства.

Выбор метода горизонтального бурения производится с учетом всех особенностей конкретного промысла. Рельеф местности, геологический состав разбуриваемых пород и прочие условия работы требуют определенного метода такого бурения, и в случае, когда выбор технологии сделан с учетом всех необходимых параметров, увеличение продуктивности скважины в ходе проведения горизонтального бурения будет максимальным.

Ключевым преимуществом горизонтальных буровых технологий является сохранение экологического баланса и минимизация ущерба, наносимого ландшафту в месте проведения работ. На жизнь местного населения такие способы также практически не оказывают никакого отрицательного влияния.

Подготовительный этап

Сам процесс формирования горизонтальной нефтедобывающей скважины может проводиться на достаточно больших глубинах, с использованием соответствующего оборудования для глубинного бурения. Перед началом процесса оформляется геолого-технический наряд и разрабатывается техническая карта. Контроль за этапами производства работ проводится в строгом соответствии с техническим регламентом.

Основные стадии подготовительного этапа горизонтального бурения (по порядку):

  • доставка на место и сборка необходимого для подготовительной работы оборудования;
  • спуско-подъемные работы с этим оборудованием;
  • ориентировочное бурение;
  • подготовка и смешивание , с учетом необходимой плотности и массы, включающая в себя добавление необходимых присадок;
  • работы по герметизации устья скважины;
  • операции глушения скважины;
  • получение и подготовка данных исследования существующих стволов с точки зрения их геофизических параметров;
  • подготовка таких стволов к спуску испытательного устройства для горной породы;
  • подрыв зарядов для отбора кернов;
  • освоение подготовленной скважины;
  • доставка на промысел необходимых буровых установок.

На каждой стадии подготовительного этапа необходима регулярная проверка в целях поддержания его характеристики на требуемом уровне. Это обеспечивается проведением регулярных лабораторных анализов. Устье скважинного ствола необходимо оснастить противовыбросовым оборудованием для минимизации рисков, связанных с возможным возникновением в процессе работы аварийных ситуаций.

Техническое состояние используемых в технологическом процессе устройств необходимо регулярно и своевременно проверять, для чего используется целый комплекс контрольно-измерительных устройств, исправность которых, в свою очередь, также должна быть под постоянным контролем. Для обеспечения безопасности работы применяются разного рода предохранительные элементы и средства автоматизации

После завершения подготовительного этапа обязательно проводятся предварительные испытания горных пластов.

На каждом этапе бурового процесса проводятся регулярные профилактические осмотры применяемого технологического оборудования до и после его непосредственного использования.

Управление горизонтальным бурением скважин

Управление оборудованием в процессе такого бурения является важной задачей, так как бур находится на значительном удалении от оператора. Для этого используется специальный зонд, расположенный на буровой головке. Синхронизация действий зонда обеспечивается специальными техническими устройствами, которыми с поверхности управляет оператор.

Горизонтальные скважины эффективно использовались в следующих случаях:

  • 1. В трещиноватых коллекторах горизонтальные скважины использовались для того, чтобы пересечь трещины с целью эффективного дренирования коллектора (примеры: Bakken formation, Северная Дакота, США; Austin Chalk, Штат Техас, США и Devonian Shale, Западная Вирджиния, США).
  • 2. В коллекторах с опасностью водных и газовых прорывов горизонтальные скважины использовались, чтобы минимизировать проблемы обводнения и повышать нефтедобычу (например: месторождение Rospo Маге, морское бурение, Италия; месторождение Helder, морское бурение, Нидерланды; месторождение Bima, Индонезия; Prudhoe Bay, Штат Аляска, США и Empire Abo Unit, Новая Мексика, США).
  • 3. При добыче газа горизонтальные скважины могут использоваться как в коллекторах с низкой проницаемостью, так и в коллекторах с высокой проницаемостью. В низко-проницаемых коллекторах горизонтальные скважины могут улучшить дренажную зону и сократить число скважин, которые требуются для дренирования коллектора. В коллекторах с высокопроницаемым коллектором, где скорости газа в прискважинной зоне высоки в вертикальных скважинах, горизонтальные скважины могут использоваться для того, чтобы снизить скорости газа в прискважинной зоне. Таким образом, горизонтальные скважины могут использоваться для уменьшения турбулентности в прискважинной зоне и увеличения производительности скважины в коллекторах с высокой проницаемостью. Недавнее применение технологии горизонтального бурения на газовом месторождении Zuidwal в Нидерландах подтверждает эффективность горизонтальных скважин в снижении турбулентности в прискважинной зоне.
  • 4. Горизонтальные скважины использовались для увеличения нефтеотдачи пласта, особенно с применением термических методов воздействия на пласт. Длинная горизонтальная скважина обеспечивает большую область контакта с коллектором и поэтому повышает приемистость нагнетательной скважины. Это особенно выгодно в тех случаях увеличения нефтеотдачи, когда приемистость является проблемой. Горизонтальные скважины также использовались как эксплуатационные.

Надлежащая ориентация горизонтальных скважин, особенно в трещиноватых коллекторах, может также повысить эффективность вытеснения при интенсификации нефтеотдачи пласта. С недавних пор горизонтальные скважины используются в обводненных районах для закачки полимеров и других агентов для повышения эффективности вытеснения нефти.

Другие случаи применения горизонтальных скважин связаны, главным образом, с преодолением финансовых проблем, обусловленных бурением. На морских месторождениях, на отдаленных месторождениях в чувствительных к загрязнениям областях, где стоимость проекта может быть снижена только путем сокращения до минимума числа скважин, которые требуются для дренирования данного коллектора, горизонтальные скважины очень предпочтительны. В этих случаях горизонтальные скважины обеспечивают уникальные преимущества. Например, при бурении морских скважин затраты на содержание платформы пропорциональны количеству скважин, которые можно пробурить с этой платформы. Протяженные горизонтальные скважины могут использоваться не только для того, чтобы сократить число скважин, требуемых для дренирования данного объема коллектора, но они могут также увеличить объем коллектора, который может быть дренирован с Одной платформы, и значительно сократить проектные затраты. Аналогично в чувствительных к загрязнению областях и на месторождениях, находящихся под городами, горизонтальные (скважины могут использоваться для дренирования большого объема коллектора с минимальным поверхностным ущербом с позиций экологии).

Таблица 1.1 Пробуренные горизонтальные скважины

Компания *

Месторождение

Кол-во скважин

ЯРЕГА, СССР

LEO RANNEY, et al.

McCONNESVILLE, OHIO

FRANKLIN HENRY FIELD, VENAGO COUNTY, PENNSYLVANIA

ROUND MOUNTAIN FIELD, KERN COUNTY, CALIFORNIA

NEW TECH OIL, MALTA, OHIO

MIDWAY SUNSET, SAN JOAQUIN VALLEY, CALIFORNIA

VENEZUELAN OIL CONCESSIONS,LTD

LA PAS FIELD, WESTERN VENEZUELA.

LONG BEACH OIL DEVELOPMENT CO

LOS ANGELES BASIN AREA (WILMINGTON FIELD)

MAPKOBO, ЗАПАДНАЯ СИБИРЬ, СССР

COLD LAKE, ALBERTA

TISDALE, WYOMING

FORT McMURRY, ALBERTA

NORMAL WELLS UNDER McKENZIE RIVER, ALBERTA, CANADA

ELF-AQUITAINE ELF-AQUITAINE

LACQ FIELD,SOUTHWEST FRANCE LACQ FIELD, SOUTHWEST FRANCE

ELF-AQUITAINE ELF-AQUITAINE

ROSPO MARE, OFFSHORE ITALY CASTERLA LOU, SOUTH FRANCE

EMPIRE ABO UNIT, NEW MEXICO

EMPIRE ABO UNIT, NEW MEXICO

LEHRTE FIELD, W.GERMANY

COLD LAKE, ALBERTA

FAZENDA BELAM FIIELD

McMULLEN CO., TEXAS

GLASSOCK CO., TEXAS

PRUDHOE BAY, ALASKA

NIAGARAN REEF TREND RESERVOIR, MUSKEGAN COUNTY, MICHIGAN

TEXAS EASTERN SKYLINE

GRASSY TRAIL, UTAH

JAVA SEA, RAMA 1-7

AUSTIN CHALK, ROCKWELL COUNTY, TEXAS

SPRABERRY TREND, TEXAS

WAYNE COUNTRY, WEST VIRGINIA

САЛЫМСКОЕ, ЗАПАДНАЯ СИБИРЬ

© 2024 lobnyaremont.ru - МастерСтрой